This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| lpival.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | ||
| lpival.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | lpival | ⊢ ( 𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| 2 | lpival.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| 3 | lpival.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 5 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( RSpan ‘ 𝑟 ) = ( RSpan ‘ 𝑅 ) ) | |
| 6 | 5 | fveq1d | ⊢ ( 𝑟 = 𝑅 → ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) |
| 7 | 6 | sneqd | ⊢ ( 𝑟 = 𝑅 → { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) } = { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) |
| 8 | 4 7 | iuneq12d | ⊢ ( 𝑟 = 𝑅 → ∪ 𝑔 ∈ ( Base ‘ 𝑟 ) { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) } = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) |
| 9 | df-lpidl | ⊢ LPIdeal = ( 𝑟 ∈ Ring ↦ ∪ 𝑔 ∈ ( Base ‘ 𝑟 ) { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) } ) | |
| 10 | fvex | ⊢ ( RSpan ‘ 𝑅 ) ∈ V | |
| 11 | 10 | rnex | ⊢ ran ( RSpan ‘ 𝑅 ) ∈ V |
| 12 | p0ex | ⊢ { ∅ } ∈ V | |
| 13 | 11 12 | unex | ⊢ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ∈ V |
| 14 | iunss | ⊢ ( ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ↔ ∀ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ) | |
| 15 | fvrn0 | ⊢ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ∈ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) | |
| 16 | snssi | ⊢ ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ∈ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) → { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ) | |
| 17 | 15 16 | ax-mp | ⊢ { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) |
| 18 | 17 | a1i | ⊢ ( 𝑔 ∈ ( Base ‘ 𝑅 ) → { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ) |
| 19 | 14 18 | mprgbir | ⊢ ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) |
| 20 | 13 19 | ssexi | ⊢ ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ∈ V |
| 21 | 8 9 20 | fvmpt | ⊢ ( 𝑅 ∈ Ring → ( LPIdeal ‘ 𝑅 ) = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) |
| 22 | iuneq1 | ⊢ ( 𝐵 = ( Base ‘ 𝑅 ) → ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) } ) | |
| 23 | 3 22 | ax-mp | ⊢ ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) } |
| 24 | 2 | fveq1i | ⊢ ( 𝐾 ‘ { 𝑔 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) |
| 25 | 24 | sneqi | ⊢ { ( 𝐾 ‘ { 𝑔 } ) } = { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } |
| 26 | 25 | a1i | ⊢ ( 𝑔 ∈ ( Base ‘ 𝑅 ) → { ( 𝐾 ‘ { 𝑔 } ) } = { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) |
| 27 | 26 | iuneq2i | ⊢ ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) } = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } |
| 28 | 23 27 | eqtri | ⊢ ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } |
| 29 | 21 1 28 | 3eqtr4g | ⊢ ( 𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ) |