This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | |- P = ( LPIdeal ` R ) |
|
| lpival.k | |- K = ( RSpan ` R ) |
||
| lpival.b | |- B = ( Base ` R ) |
||
| Assertion | lpival | |- ( R e. Ring -> P = U_ g e. B { ( K ` { g } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | |- P = ( LPIdeal ` R ) |
|
| 2 | lpival.k | |- K = ( RSpan ` R ) |
|
| 3 | lpival.b | |- B = ( Base ` R ) |
|
| 4 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 5 | fveq2 | |- ( r = R -> ( RSpan ` r ) = ( RSpan ` R ) ) |
|
| 6 | 5 | fveq1d | |- ( r = R -> ( ( RSpan ` r ) ` { g } ) = ( ( RSpan ` R ) ` { g } ) ) |
| 7 | 6 | sneqd | |- ( r = R -> { ( ( RSpan ` r ) ` { g } ) } = { ( ( RSpan ` R ) ` { g } ) } ) |
| 8 | 4 7 | iuneq12d | |- ( r = R -> U_ g e. ( Base ` r ) { ( ( RSpan ` r ) ` { g } ) } = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } ) |
| 9 | df-lpidl | |- LPIdeal = ( r e. Ring |-> U_ g e. ( Base ` r ) { ( ( RSpan ` r ) ` { g } ) } ) |
|
| 10 | fvex | |- ( RSpan ` R ) e. _V |
|
| 11 | 10 | rnex | |- ran ( RSpan ` R ) e. _V |
| 12 | p0ex | |- { (/) } e. _V |
|
| 13 | 11 12 | unex | |- ( ran ( RSpan ` R ) u. { (/) } ) e. _V |
| 14 | iunss | |- ( U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) <-> A. g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) ) |
|
| 15 | fvrn0 | |- ( ( RSpan ` R ) ` { g } ) e. ( ran ( RSpan ` R ) u. { (/) } ) |
|
| 16 | snssi | |- ( ( ( RSpan ` R ) ` { g } ) e. ( ran ( RSpan ` R ) u. { (/) } ) -> { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) ) |
|
| 17 | 15 16 | ax-mp | |- { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) |
| 18 | 17 | a1i | |- ( g e. ( Base ` R ) -> { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) ) |
| 19 | 14 18 | mprgbir | |- U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) |
| 20 | 13 19 | ssexi | |- U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } e. _V |
| 21 | 8 9 20 | fvmpt | |- ( R e. Ring -> ( LPIdeal ` R ) = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } ) |
| 22 | iuneq1 | |- ( B = ( Base ` R ) -> U_ g e. B { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( K ` { g } ) } ) |
|
| 23 | 3 22 | ax-mp | |- U_ g e. B { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( K ` { g } ) } |
| 24 | 2 | fveq1i | |- ( K ` { g } ) = ( ( RSpan ` R ) ` { g } ) |
| 25 | 24 | sneqi | |- { ( K ` { g } ) } = { ( ( RSpan ` R ) ` { g } ) } |
| 26 | 25 | a1i | |- ( g e. ( Base ` R ) -> { ( K ` { g } ) } = { ( ( RSpan ` R ) ` { g } ) } ) |
| 27 | 26 | iuneq2i | |- U_ g e. ( Base ` R ) { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } |
| 28 | 23 27 | eqtri | |- U_ g e. B { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } |
| 29 | 21 1 28 | 3eqtr4g | |- ( R e. Ring -> P = U_ g e. B { ( K ` { g } ) } ) |