This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| lpival.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | ||
| lpival.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | islpidl | ⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑃 ↔ ∃ 𝑔 ∈ 𝐵 𝐼 = ( 𝐾 ‘ { 𝑔 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| 2 | lpival.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| 3 | lpival.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | 1 2 3 | lpival | ⊢ ( 𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ) |
| 5 | 4 | eleq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑃 ↔ 𝐼 ∈ ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ) ) |
| 6 | eliun | ⊢ ( 𝐼 ∈ ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ↔ ∃ 𝑔 ∈ 𝐵 𝐼 ∈ { ( 𝐾 ‘ { 𝑔 } ) } ) | |
| 7 | fvex | ⊢ ( 𝐾 ‘ { 𝑔 } ) ∈ V | |
| 8 | 7 | elsn2 | ⊢ ( 𝐼 ∈ { ( 𝐾 ‘ { 𝑔 } ) } ↔ 𝐼 = ( 𝐾 ‘ { 𝑔 } ) ) |
| 9 | 8 | rexbii | ⊢ ( ∃ 𝑔 ∈ 𝐵 𝐼 ∈ { ( 𝐾 ‘ { 𝑔 } ) } ↔ ∃ 𝑔 ∈ 𝐵 𝐼 = ( 𝐾 ‘ { 𝑔 } ) ) |
| 10 | 6 9 | bitri | ⊢ ( 𝐼 ∈ ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ↔ ∃ 𝑔 ∈ 𝐵 𝐼 = ( 𝐾 ‘ { 𝑔 } ) ) |
| 11 | 5 10 | bitrdi | ⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑃 ↔ ∃ 𝑔 ∈ 𝐵 𝐼 = ( 𝐾 ‘ { 𝑔 } ) ) ) |