This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of left principal ideals of a ring, which are ideals with a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lpidl | ⊢ LPIdeal = ( 𝑤 ∈ Ring ↦ ∪ 𝑔 ∈ ( Base ‘ 𝑤 ) { ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clpidl | ⊢ LPIdeal | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | crg | ⊢ Ring | |
| 3 | vg | ⊢ 𝑔 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 7 | crsp | ⊢ RSpan | |
| 8 | 5 7 | cfv | ⊢ ( RSpan ‘ 𝑤 ) |
| 9 | 3 | cv | ⊢ 𝑔 |
| 10 | 9 | csn | ⊢ { 𝑔 } |
| 11 | 10 8 | cfv | ⊢ ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) |
| 12 | 11 | csn | ⊢ { ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) } |
| 13 | 3 6 12 | ciun | ⊢ ∪ 𝑔 ∈ ( Base ‘ 𝑤 ) { ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) } |
| 14 | 1 2 13 | cmpt | ⊢ ( 𝑤 ∈ Ring ↦ ∪ 𝑔 ∈ ( Base ‘ 𝑤 ) { ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) } ) |
| 15 | 0 14 | wceq | ⊢ LPIdeal = ( 𝑤 ∈ Ring ↦ ∪ 𝑔 ∈ ( Base ‘ 𝑤 ) { ( ( RSpan ‘ 𝑤 ) ‘ { 𝑔 } ) } ) |