This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| Assertion | logdmnrp | |- ( A e. D -> -. -u A e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | eldifn | |- ( A e. ( CC \ ( -oo (,] 0 ) ) -> -. A e. ( -oo (,] 0 ) ) |
|
| 3 | 2 1 | eleq2s | |- ( A e. D -> -. A e. ( -oo (,] 0 ) ) |
| 4 | rpre | |- ( -u A e. RR+ -> -u A e. RR ) |
|
| 5 | 1 | ellogdm | |- ( A e. D <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) ) |
| 6 | 5 | simplbi | |- ( A e. D -> A e. CC ) |
| 7 | negreb | |- ( A e. CC -> ( -u A e. RR <-> A e. RR ) ) |
|
| 8 | 6 7 | syl | |- ( A e. D -> ( -u A e. RR <-> A e. RR ) ) |
| 9 | 4 8 | imbitrid | |- ( A e. D -> ( -u A e. RR+ -> A e. RR ) ) |
| 10 | 9 | imp | |- ( ( A e. D /\ -u A e. RR+ ) -> A e. RR ) |
| 11 | 10 | mnfltd | |- ( ( A e. D /\ -u A e. RR+ ) -> -oo < A ) |
| 12 | rpgt0 | |- ( -u A e. RR+ -> 0 < -u A ) |
|
| 13 | 12 | adantl | |- ( ( A e. D /\ -u A e. RR+ ) -> 0 < -u A ) |
| 14 | 10 | lt0neg1d | |- ( ( A e. D /\ -u A e. RR+ ) -> ( A < 0 <-> 0 < -u A ) ) |
| 15 | 13 14 | mpbird | |- ( ( A e. D /\ -u A e. RR+ ) -> A < 0 ) |
| 16 | 0re | |- 0 e. RR |
|
| 17 | ltle | |- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) |
|
| 18 | 10 16 17 | sylancl | |- ( ( A e. D /\ -u A e. RR+ ) -> ( A < 0 -> A <_ 0 ) ) |
| 19 | 15 18 | mpd | |- ( ( A e. D /\ -u A e. RR+ ) -> A <_ 0 ) |
| 20 | mnfxr | |- -oo e. RR* |
|
| 21 | elioc2 | |- ( ( -oo e. RR* /\ 0 e. RR ) -> ( A e. ( -oo (,] 0 ) <-> ( A e. RR /\ -oo < A /\ A <_ 0 ) ) ) |
|
| 22 | 20 16 21 | mp2an | |- ( A e. ( -oo (,] 0 ) <-> ( A e. RR /\ -oo < A /\ A <_ 0 ) ) |
| 23 | 10 11 19 22 | syl3anbrc | |- ( ( A e. D /\ -u A e. RR+ ) -> A e. ( -oo (,] 0 ) ) |
| 24 | 3 23 | mtand | |- ( A e. D -> -. -u A e. RR+ ) |