This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lo1o1 | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1dm | ⊢ ( 𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ ) | |
| 2 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → dom 𝐹 = 𝐴 ) | |
| 3 | 2 | sseq1d | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( dom 𝐹 ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
| 4 | 1 3 | imbitrid | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ 𝑂(1) → 𝐴 ⊆ ℝ ) ) |
| 5 | lo1dm | ⊢ ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) → dom ( abs ∘ 𝐹 ) ⊆ ℝ ) | |
| 6 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 7 | fco | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( abs ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( abs ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 9 | 8 | fdmd | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → dom ( abs ∘ 𝐹 ) = 𝐴 ) |
| 10 | 9 | sseq1d | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( dom ( abs ∘ 𝐹 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
| 11 | 5 10 | imbitrid | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ ) ) |
| 12 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 13 | 12 | adantlr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 14 | 13 | breq1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
| 15 | 14 | imbi2d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ≤ 𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
| 16 | 15 | ralbidva | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
| 17 | 16 | 2rexbidv | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
| 18 | ello12 | ⊢ ( ( ( abs ∘ 𝐹 ) : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) | |
| 19 | 8 18 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
| 20 | elo12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) | |
| 21 | 17 19 20 | 3bitr4rd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) ) |
| 22 | 21 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐴 ⊆ ℝ → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) ) ) |
| 23 | 4 11 22 | pm5.21ndd | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) ) |