This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elo12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | ⊢ ℂ ∈ V | |
| 2 | reex | ⊢ ℝ ∈ V | |
| 3 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | |
| 4 | 1 2 3 | mpanl12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 5 | elo1 | ⊢ ( 𝐹 ∈ 𝑂(1) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) | |
| 6 | 5 | baib | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
| 7 | 4 6 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
| 8 | elin | ⊢ ( 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ ( 𝑥 [,) +∞ ) ) ) | |
| 9 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → dom 𝐹 = 𝐴 ) | |
| 10 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → dom 𝐹 = 𝐴 ) |
| 11 | 10 | eleq2d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( 𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴 ) ) |
| 12 | 11 | anbi1d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ ( 𝑥 [,) +∞ ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑥 [,) +∞ ) ) ) ) |
| 13 | simpllr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 14 | 13 | sselda | ⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 15 | simpllr | ⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 16 | elicopnf | ⊢ ( 𝑥 ∈ ℝ → ( 𝑦 ∈ ( 𝑥 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑥 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) ) ) |
| 18 | 14 17 | mpbirand | ⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑥 [,) +∞ ) ↔ 𝑥 ≤ 𝑦 ) ) |
| 19 | 18 | pm5.32da | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑥 [,) +∞ ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ) |
| 20 | 12 19 | bitrd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ ( 𝑥 [,) +∞ ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ) |
| 21 | 8 20 | bitrid | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ) |
| 22 | 21 | imbi1d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
| 23 | impexp | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) | |
| 24 | 22 23 | bitrdi | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) ) |
| 25 | 24 | ralbidv2 | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
| 26 | 25 | rexbidva | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ↔ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
| 27 | 26 | rexbidva | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
| 28 | 7 27 | bitrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |