This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (This function is useful for converting theorems about <_O(1) to O(1) .) (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lo1o12.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| Assertion | lo1o12 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lo1o12.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 2 | 1 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 3 | lo1o1 | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ≤𝑂(1) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ≤𝑂(1) ) ) |
| 5 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
| 7 | 6 1 | cofmpt | ⊢ ( 𝜑 → ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ) |
| 8 | 7 | eleq1d | ⊢ ( 𝜑 → ( ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ≤𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) ) |
| 9 | 4 8 | bitrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) ) |