This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfncon.1 | ⊢ 𝑇 ∈ LinFn | |
| Assertion | lnfnconi | ⊢ ( 𝑇 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfncon.1 | ⊢ 𝑇 ∈ LinFn | |
| 2 | nmcfnex | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑇 ∈ ContFn → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
| 4 | nmcfnlb | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) | |
| 5 | 1 4 | mp3an1 | ⊢ ( ( 𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
| 6 | 1 | lnfnfi | ⊢ 𝑇 : ℋ ⟶ ℂ |
| 7 | elcnfn | ⊢ ( 𝑇 ∈ ContFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) ) | |
| 8 | 6 7 | mpbiran | ⊢ ( 𝑇 ∈ ContFn ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 9 | 6 | ffvelcdmi | ⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℂ ) |
| 10 | 9 | abscld | ⊢ ( 𝑦 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 11 | 1 | lnfnsubi | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) |
| 12 | 3 5 8 10 11 | lnconi | ⊢ ( 𝑇 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |