This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lnopconi and lnfnconi . (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lncon.1 | ⊢ ( 𝑇 ∈ 𝐶 → 𝑆 ∈ ℝ ) | |
| lncon.2 | ⊢ ( ( 𝑇 ∈ 𝐶 ∧ 𝑦 ∈ ℋ ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) | ||
| lncon.3 | ⊢ ( 𝑇 ∈ 𝐶 ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) | ||
| lncon.4 | ⊢ ( 𝑦 ∈ ℋ → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) | ||
| lncon.5 | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) | ||
| Assertion | lnconi | ⊢ ( 𝑇 ∈ 𝐶 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lncon.1 | ⊢ ( 𝑇 ∈ 𝐶 → 𝑆 ∈ ℝ ) | |
| 2 | lncon.2 | ⊢ ( ( 𝑇 ∈ 𝐶 ∧ 𝑦 ∈ ℋ ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) | |
| 3 | lncon.3 | ⊢ ( 𝑇 ∈ 𝐶 ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) | |
| 4 | lncon.4 | ⊢ ( 𝑦 ∈ ℋ → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) | |
| 5 | lncon.5 | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) | |
| 6 | 2 | ralrimiva | ⊢ ( 𝑇 ∈ 𝐶 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) |
| 7 | oveq1 | ⊢ ( 𝑥 = 𝑆 → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) = ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) | |
| 8 | 7 | breq2d | ⊢ ( 𝑥 = 𝑆 → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑥 = 𝑆 → ( ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 10 | 9 | rspcev | ⊢ ( ( 𝑆 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| 11 | 1 6 10 | syl2anc | ⊢ ( 𝑇 ∈ 𝐶 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| 12 | arch | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) |
| 14 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 15 | simplll | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℝ ) | |
| 16 | simpllr | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 𝑛 ∈ ℝ ) | |
| 17 | normcl | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) | |
| 18 | 17 | adantl | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
| 19 | normge0 | ⊢ ( 𝑦 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝑦 ) ) | |
| 20 | 19 | adantl | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 0 ≤ ( normℎ ‘ 𝑦 ) ) |
| 21 | ltle | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑥 < 𝑛 → 𝑥 ≤ 𝑛 ) ) | |
| 22 | 21 | imp | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → 𝑥 ≤ 𝑛 ) |
| 23 | 22 | adantr | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 𝑥 ≤ 𝑛 ) |
| 24 | 15 16 18 20 23 | lemul1ad | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) |
| 25 | 4 | adantl | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 26 | simpll | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → 𝑥 ∈ ℝ ) | |
| 27 | remulcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) | |
| 28 | 26 17 27 | syl2an | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 29 | simplr | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → 𝑛 ∈ ℝ ) | |
| 30 | remulcl | ⊢ ( ( 𝑛 ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) | |
| 31 | 29 17 30 | syl2an | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 32 | letr | ⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ∧ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ∧ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∧ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) | |
| 33 | 25 28 31 32 | syl3anc | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∧ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 34 | 24 33 | mpan2d | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 35 | 34 | ralimdva | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → ( ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 36 | 35 | impancom | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑥 < 𝑛 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 37 | 36 | an32s | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ℝ ) → ( 𝑥 < 𝑛 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 38 | 14 37 | sylan2 | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < 𝑛 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 39 | 38 | reximdva | ⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 → ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 40 | 13 39 | mpd | ⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) |
| 41 | 40 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) |
| 42 | simprr | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑧 ∈ ℝ+ ) | |
| 43 | simpll | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑛 ∈ ℕ ) | |
| 44 | 43 | nnrpd | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑛 ∈ ℝ+ ) |
| 45 | 42 44 | rpdivcld | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑧 / 𝑛 ) ∈ ℝ+ ) |
| 46 | simprr | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑤 ∈ ℋ ) | |
| 47 | simprll | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑥 ∈ ℋ ) | |
| 48 | hvsubcl | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑤 −ℎ 𝑥 ) ∈ ℋ ) | |
| 49 | 46 47 48 | syl2anc | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑤 −ℎ 𝑥 ) ∈ ℋ ) |
| 50 | 2fveq3 | ⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) | |
| 51 | fveq2 | ⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) | |
| 52 | 51 | oveq2d | ⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( 𝑛 · ( normℎ ‘ 𝑦 ) ) = ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
| 53 | 50 52 | breq12d | ⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) ) |
| 54 | 53 | rspcva | ⊢ ( ( ( 𝑤 −ℎ 𝑥 ) ∈ ℋ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
| 55 | 49 54 | sylan | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
| 56 | 55 | an32s | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
| 57 | 50 | eleq1d | ⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ↔ ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) ) |
| 58 | 57 4 | vtoclga | ⊢ ( ( 𝑤 −ℎ 𝑥 ) ∈ ℋ → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
| 59 | 49 58 | syl | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
| 60 | 14 | adantr | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑛 ∈ ℝ ) |
| 61 | normcl | ⊢ ( ( 𝑤 −ℎ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ) | |
| 62 | 49 61 | syl | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ) |
| 63 | remulcl | ⊢ ( ( 𝑛 ∈ ℝ ∧ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ) → ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) | |
| 64 | 60 62 63 | syl2anc | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
| 65 | simprlr | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑧 ∈ ℝ+ ) | |
| 66 | 65 | rpred | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑧 ∈ ℝ ) |
| 67 | lelttr | ⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) | |
| 68 | 59 64 66 67 | syl3anc | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
| 69 | 68 | adantlr | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
| 70 | 56 69 | mpand | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
| 71 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 72 | 71 | rpregt0d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
| 73 | 72 | adantr | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
| 74 | ltmuldiv2 | ⊢ ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) | |
| 75 | 62 66 73 74 | syl3anc | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) |
| 76 | 75 | adantlr | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) |
| 77 | 46 47 5 | syl2anc | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) |
| 78 | 77 | adantlr | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) |
| 79 | 78 | fveq2d | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) = ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 80 | 79 | breq1d | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 81 | 70 76 80 | 3imtr3d | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 82 | 81 | anassrs | ⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 83 | 82 | ralrimiva | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 84 | breq2 | ⊢ ( 𝑦 = ( 𝑧 / 𝑛 ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) | |
| 85 | 84 | rspceaimv | ⊢ ( ( ( 𝑧 / 𝑛 ) ∈ ℝ+ ∧ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 86 | 45 83 85 | syl2anc | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 87 | 86 | ralrimivva | ⊢ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 88 | 87 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 89 | 88 3 | sylibr | ⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) → 𝑇 ∈ 𝐶 ) |
| 90 | 41 89 | syl | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → 𝑇 ∈ 𝐶 ) |
| 91 | 11 90 | impbii | ⊢ ( 𝑇 ∈ 𝐶 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |