This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfilfval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( CauFil ‘ 𝐷 ) = { 𝑓 ∈ ( Fil ‘ 𝑋 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn | ⊢ ( ∞Met ‘ 𝑋 ) ⊆ ∪ ran ∞Met | |
| 2 | 1 | sseli | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ∪ ran ∞Met ) |
| 3 | dmeq | ⊢ ( 𝑑 = 𝐷 → dom 𝑑 = dom 𝐷 ) | |
| 4 | 3 | dmeqd | ⊢ ( 𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷 ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑑 = 𝐷 → ( Fil ‘ dom dom 𝑑 ) = ( Fil ‘ dom dom 𝐷 ) ) |
| 6 | imaeq1 | ⊢ ( 𝑑 = 𝐷 → ( 𝑑 “ ( 𝑦 × 𝑦 ) ) = ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ) | |
| 7 | 6 | sseq1d | ⊢ ( 𝑑 = 𝐷 → ( ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
| 8 | 7 | rexbidv | ⊢ ( 𝑑 = 𝐷 → ( ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∃ 𝑦 ∈ 𝑓 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
| 10 | 5 9 | rabeqbidv | ⊢ ( 𝑑 = 𝐷 → { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } = { 𝑓 ∈ ( Fil ‘ dom dom 𝐷 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |
| 11 | df-cfil | ⊢ CauFil = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) | |
| 12 | fvex | ⊢ ( Fil ‘ dom dom 𝐷 ) ∈ V | |
| 13 | 12 | rabex | ⊢ { 𝑓 ∈ ( Fil ‘ dom dom 𝐷 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ∈ V |
| 14 | 10 11 13 | fvmpt | ⊢ ( 𝐷 ∈ ∪ ran ∞Met → ( CauFil ‘ 𝐷 ) = { 𝑓 ∈ ( Fil ‘ dom dom 𝐷 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |
| 15 | 2 14 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( CauFil ‘ 𝐷 ) = { 𝑓 ∈ ( Fil ‘ dom dom 𝐷 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |
| 16 | xmetdmdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) | |
| 17 | 16 | fveq2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( Fil ‘ 𝑋 ) = ( Fil ‘ dom dom 𝐷 ) ) |
| 18 | 17 | rabeqdv | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → { 𝑓 ∈ ( Fil ‘ 𝑋 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } = { 𝑓 ∈ ( Fil ‘ dom dom 𝐷 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |
| 19 | 15 18 | eqtr4d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( CauFil ‘ 𝐷 ) = { 𝑓 ∈ ( Fil ‘ 𝑋 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |