This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmnn.2 | |- J = ( MetOpen ` D ) |
|
| lmnn.3 | |- ( ph -> D e. ( *Met ` X ) ) |
||
| lmnn.4 | |- ( ph -> P e. X ) |
||
| lmnn.5 | |- ( ph -> F : NN --> X ) |
||
| lmnn.6 | |- ( ( ph /\ k e. NN ) -> ( ( F ` k ) D P ) < ( 1 / k ) ) |
||
| Assertion | lmnn | |- ( ph -> F ( ~~>t ` J ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmnn.2 | |- J = ( MetOpen ` D ) |
|
| 2 | lmnn.3 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 3 | lmnn.4 | |- ( ph -> P e. X ) |
|
| 4 | lmnn.5 | |- ( ph -> F : NN --> X ) |
|
| 5 | lmnn.6 | |- ( ( ph /\ k e. NN ) -> ( ( F ` k ) D P ) < ( 1 / k ) ) |
|
| 6 | rpreccl | |- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
|
| 7 | 6 | adantl | |- ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
| 8 | 7 | rpred | |- ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. RR ) |
| 9 | 7 | rpge0d | |- ( ( ph /\ x e. RR+ ) -> 0 <_ ( 1 / x ) ) |
| 10 | flge0nn0 | |- ( ( ( 1 / x ) e. RR /\ 0 <_ ( 1 / x ) ) -> ( |_ ` ( 1 / x ) ) e. NN0 ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ( ph /\ x e. RR+ ) -> ( |_ ` ( 1 / x ) ) e. NN0 ) |
| 12 | nn0p1nn | |- ( ( |_ ` ( 1 / x ) ) e. NN0 -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN ) |
|
| 13 | 11 12 | syl | |- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN ) |
| 14 | 2 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> D e. ( *Met ` X ) ) |
| 15 | 4 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> F : NN --> X ) |
| 16 | eluznn | |- ( ( ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. NN ) |
|
| 17 | 13 16 | sylan | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. NN ) |
| 18 | 15 17 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( F ` k ) e. X ) |
| 19 | 3 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> P e. X ) |
| 20 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X /\ P e. X ) -> ( ( F ` k ) D P ) e. RR* ) |
|
| 21 | 14 18 19 20 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) e. RR* ) |
| 22 | 17 | nnrecred | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) e. RR ) |
| 23 | 22 | rexrd | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) e. RR* ) |
| 24 | rpxr | |- ( x e. RR+ -> x e. RR* ) |
|
| 25 | 24 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> x e. RR* ) |
| 26 | 5 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. NN ) -> ( ( F ` k ) D P ) < ( 1 / k ) ) |
| 27 | 17 26 | syldan | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) < ( 1 / k ) ) |
| 28 | 8 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) e. RR ) |
| 29 | 13 | nnred | |- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. RR ) |
| 30 | 29 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. RR ) |
| 31 | 17 | nnred | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. RR ) |
| 32 | flltp1 | |- ( ( 1 / x ) e. RR -> ( 1 / x ) < ( ( |_ ` ( 1 / x ) ) + 1 ) ) |
|
| 33 | 28 32 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) < ( ( |_ ` ( 1 / x ) ) + 1 ) ) |
| 34 | eluzle | |- ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) <_ k ) |
|
| 35 | 34 | adantl | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) <_ k ) |
| 36 | 28 30 31 33 35 | ltletrd | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) < k ) |
| 37 | simplr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> x e. RR+ ) |
|
| 38 | rpregt0 | |- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
|
| 39 | nnrp | |- ( k e. NN -> k e. RR+ ) |
|
| 40 | 39 | rpregt0d | |- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
| 41 | ltrec1 | |- ( ( ( x e. RR /\ 0 < x ) /\ ( k e. RR /\ 0 < k ) ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) ) |
|
| 42 | 38 40 41 | syl2an | |- ( ( x e. RR+ /\ k e. NN ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) ) |
| 43 | 37 17 42 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) ) |
| 44 | 36 43 | mpbid | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) < x ) |
| 45 | 21 23 25 27 44 | xrlttrd | |- ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) < x ) |
| 46 | 45 | ralrimiva | |- ( ( ph /\ x e. RR+ ) -> A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) |
| 47 | fveq2 | |- ( j = ( ( |_ ` ( 1 / x ) ) + 1 ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) |
|
| 48 | 47 | raleqdv | |- ( j = ( ( |_ ` ( 1 / x ) ) + 1 ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x <-> A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) ) |
| 49 | 48 | rspcev | |- ( ( ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN /\ A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) |
| 50 | 13 46 49 | syl2anc | |- ( ( ph /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) |
| 51 | 50 | ralrimiva | |- ( ph -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) |
| 52 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 53 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 54 | eqidd | |- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
|
| 55 | 1 2 52 53 54 4 | lmmbrf | |- ( ph -> ( F ( ~~>t ` J ) P <-> ( P e. X /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) ) ) |
| 56 | 3 51 55 | mpbir2and | |- ( ph -> F ( ~~>t ` J ) P ) |