This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication of the vector space by a fixed scalar is an endomorphism of the additive group of vectors. (Contributed by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsghm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodvsghm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvsghm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvsghm.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | lmodvsghm | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ∈ ( 𝑊 GrpHom 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsghm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvsghm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | lmodvsghm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lmodvsghm.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 6 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) → 𝑊 ∈ Grp ) |
| 8 | 1 2 3 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑅 · 𝑥 ) ∈ 𝑉 ) |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑅 · 𝑥 ) ∈ 𝑉 ) |
| 10 | 9 | fmpttd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) : 𝑉 ⟶ 𝑉 ) |
| 11 | 1 5 2 3 4 | lmodvsdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑅 · ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑅 · 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑅 · 𝑧 ) ) ) |
| 12 | 11 | 3exp2 | ⊢ ( 𝑊 ∈ LMod → ( 𝑅 ∈ 𝐾 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( 𝑅 · ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑅 · 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑅 · 𝑧 ) ) ) ) ) ) |
| 13 | 12 | imp43 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑅 · ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑅 · 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑅 · 𝑧 ) ) ) |
| 14 | 1 5 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 16 | 15 | adantlr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 17 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑅 · 𝑥 ) = ( 𝑅 · ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) | |
| 18 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) | |
| 19 | ovex | ⊢ ( 𝑅 · ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∈ V | |
| 20 | 17 18 19 | fvmpt | ⊢ ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) = ( 𝑅 · ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 21 | 16 20 | syl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) = ( 𝑅 · ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅 · 𝑥 ) = ( 𝑅 · 𝑦 ) ) | |
| 23 | ovex | ⊢ ( 𝑅 · 𝑦 ) ∈ V | |
| 24 | 22 18 23 | fvmpt | ⊢ ( 𝑦 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ 𝑦 ) = ( 𝑅 · 𝑦 ) ) |
| 25 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑅 · 𝑥 ) = ( 𝑅 · 𝑧 ) ) | |
| 26 | ovex | ⊢ ( 𝑅 · 𝑧 ) ∈ V | |
| 27 | 25 18 26 | fvmpt | ⊢ ( 𝑧 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ 𝑧 ) = ( 𝑅 · 𝑧 ) ) |
| 28 | 24 27 | oveqan12d | ⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝑅 · 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑅 · 𝑧 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝑅 · 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑅 · 𝑧 ) ) ) |
| 30 | 13 21 29 | 3eqtr4d | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 31 | 1 1 5 5 7 7 10 30 | isghmd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑅 · 𝑥 ) ) ∈ ( 𝑊 GrpHom 𝑊 ) ) |