This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmpropd.a | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) | |
| lmhmpropd.b | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) | ||
| lmhmpropd.c | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| lmhmpropd.d | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) | ||
| lmhmpropd.1 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐽 ) ) | ||
| lmhmpropd.2 | ⊢ ( 𝜑 → 𝐺 = ( Scalar ‘ 𝐾 ) ) | ||
| lmhmpropd.3 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) | ||
| lmhmpropd.4 | ⊢ ( 𝜑 → 𝐺 = ( Scalar ‘ 𝑀 ) ) | ||
| lmhmpropd.p | ⊢ 𝑃 = ( Base ‘ 𝐹 ) | ||
| lmhmpropd.q | ⊢ 𝑄 = ( Base ‘ 𝐺 ) | ||
| lmhmpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| lmhmpropd.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | ||
| lmhmpropd.g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | ||
| lmhmpropd.h | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) | ||
| Assertion | lmhmpropd | ⊢ ( 𝜑 → ( 𝐽 LMHom 𝐾 ) = ( 𝐿 LMHom 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmpropd.a | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) | |
| 2 | lmhmpropd.b | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) | |
| 3 | lmhmpropd.c | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 4 | lmhmpropd.d | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) | |
| 5 | lmhmpropd.1 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐽 ) ) | |
| 6 | lmhmpropd.2 | ⊢ ( 𝜑 → 𝐺 = ( Scalar ‘ 𝐾 ) ) | |
| 7 | lmhmpropd.3 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) | |
| 8 | lmhmpropd.4 | ⊢ ( 𝜑 → 𝐺 = ( Scalar ‘ 𝑀 ) ) | |
| 9 | lmhmpropd.p | ⊢ 𝑃 = ( Base ‘ 𝐹 ) | |
| 10 | lmhmpropd.q | ⊢ 𝑄 = ( Base ‘ 𝐺 ) | |
| 11 | lmhmpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 12 | lmhmpropd.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | |
| 13 | lmhmpropd.g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | |
| 14 | lmhmpropd.h | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) | |
| 15 | 1 3 11 5 7 9 13 | lmodpropd | ⊢ ( 𝜑 → ( 𝐽 ∈ LMod ↔ 𝐿 ∈ LMod ) ) |
| 16 | 2 4 12 6 8 10 14 | lmodpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ LMod ↔ 𝑀 ∈ LMod ) ) |
| 17 | 15 16 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐽 ∈ LMod ∧ 𝐾 ∈ LMod ) ↔ ( 𝐿 ∈ LMod ∧ 𝑀 ∈ LMod ) ) ) |
| 18 | 13 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) |
| 19 | 18 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) |
| 20 | 19 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) ) |
| 21 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝜑 ) | |
| 22 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑧 ∈ 𝑃 ) | |
| 23 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐺 = 𝐹 ) | |
| 24 | 23 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐹 ) ) |
| 25 | 24 10 9 | 3eqtr4g | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑄 = 𝑃 ) |
| 26 | 22 25 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑧 ∈ 𝑄 ) |
| 27 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ) | |
| 28 | eqid | ⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) | |
| 29 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 30 | 28 29 | ghmf | ⊢ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) → 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) |
| 31 | 27 30 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) |
| 32 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) | |
| 33 | 21 1 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐵 = ( Base ‘ 𝐽 ) ) |
| 34 | 32 33 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ ( Base ‘ 𝐽 ) ) |
| 35 | 31 34 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ ( Base ‘ 𝐾 ) ) |
| 36 | 21 2 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐶 = ( Base ‘ 𝐾 ) ) |
| 37 | 35 36 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝐶 ) |
| 38 | 14 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑄 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝐶 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) |
| 39 | 21 26 37 38 | syl12anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) |
| 40 | 20 39 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 41 | 40 | 2ralbidva | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ) → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 42 | 41 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 43 | df-3an | ⊢ ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) | |
| 44 | df-3an | ⊢ ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ) ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) | |
| 45 | 42 43 44 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 46 | 6 5 | eqeq12d | ⊢ ( 𝜑 → ( 𝐺 = 𝐹 ↔ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐽 ) ) ) |
| 47 | 5 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐽 ) ) ) |
| 48 | 9 47 | eqtrid | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐽 ) ) ) |
| 49 | 1 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 50 | 48 49 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 51 | 46 50 | 3anbi23d | ⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐽 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 52 | 1 2 3 4 11 12 | ghmpropd | ⊢ ( 𝜑 → ( 𝐽 GrpHom 𝐾 ) = ( 𝐿 GrpHom 𝑀 ) ) |
| 53 | 52 | eleq2d | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ) ) |
| 54 | 8 7 | eqeq12d | ⊢ ( 𝜑 → ( 𝐺 = 𝐹 ↔ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝐿 ) ) ) |
| 55 | 7 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 56 | 9 55 | eqtrid | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 57 | 3 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 58 | 56 57 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 59 | 53 54 58 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝐺 = 𝐹 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝐵 ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝐿 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 60 | 45 51 59 | 3bitr3d | ⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐽 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ↔ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝐿 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 61 | 17 60 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝐽 ∈ LMod ∧ 𝐾 ∈ LMod ) ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐽 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ↔ ( ( 𝐿 ∈ LMod ∧ 𝑀 ∈ LMod ) ∧ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝐿 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
| 62 | eqid | ⊢ ( Scalar ‘ 𝐽 ) = ( Scalar ‘ 𝐽 ) | |
| 63 | eqid | ⊢ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐾 ) | |
| 64 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐽 ) ) = ( Base ‘ ( Scalar ‘ 𝐽 ) ) | |
| 65 | eqid | ⊢ ( ·𝑠 ‘ 𝐽 ) = ( ·𝑠 ‘ 𝐽 ) | |
| 66 | eqid | ⊢ ( ·𝑠 ‘ 𝐾 ) = ( ·𝑠 ‘ 𝐾 ) | |
| 67 | 62 63 64 28 65 66 | islmhm | ⊢ ( 𝑓 ∈ ( 𝐽 LMHom 𝐾 ) ↔ ( ( 𝐽 ∈ LMod ∧ 𝐾 ∈ LMod ) ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐽 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐽 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐽 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 68 | eqid | ⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) | |
| 69 | eqid | ⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) | |
| 70 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐿 ) ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) | |
| 71 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 72 | eqid | ⊢ ( ·𝑠 ‘ 𝐿 ) = ( ·𝑠 ‘ 𝐿 ) | |
| 73 | eqid | ⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) | |
| 74 | 68 69 70 71 72 73 | islmhm | ⊢ ( 𝑓 ∈ ( 𝐿 LMHom 𝑀 ) ↔ ( ( 𝐿 ∈ LMod ∧ 𝑀 ∈ LMod ) ∧ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝐿 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑤 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑤 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑀 ) ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 75 | 61 67 74 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 LMHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 LMHom 𝑀 ) ) ) |
| 76 | 75 | eqrdv | ⊢ ( 𝜑 → ( 𝐽 LMHom 𝐾 ) = ( 𝐿 LMHom 𝑀 ) ) |