This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 27-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| lmodpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| lmodpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| lmodpropd.4 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐾 ) ) | ||
| lmodpropd.5 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) | ||
| lmodpropd.6 | ⊢ 𝑃 = ( Base ‘ 𝐹 ) | ||
| lmodpropd.7 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | lmodpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ LMod ↔ 𝐿 ∈ LMod ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | lmodpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | lmodpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | lmodpropd.4 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐾 ) ) | |
| 5 | lmodpropd.5 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) | |
| 6 | lmodpropd.6 | ⊢ 𝑃 = ( Base ‘ 𝐹 ) | |
| 7 | lmodpropd.7 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | |
| 8 | eqid | ⊢ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐾 ) | |
| 9 | eqid | ⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) | |
| 10 | 4 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) |
| 11 | 6 10 | eqtrid | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) |
| 12 | 5 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 13 | 6 12 | eqtrid | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 14 | 4 5 | eqtr3d | ⊢ ( 𝜑 → ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐿 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐿 ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( +g ‘ ( Scalar ‘ 𝐾 ) ) = ( +g ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 17 | 16 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( +g ‘ ( Scalar ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ 𝐿 ) ) 𝑦 ) ) |
| 18 | 15 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( .r ‘ ( Scalar ‘ 𝐾 ) ) = ( .r ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 19 | 18 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( .r ‘ ( Scalar ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( Scalar ‘ 𝐿 ) ) 𝑦 ) ) |
| 20 | 1 2 8 9 11 13 3 17 19 7 | lmodprop2d | ⊢ ( 𝜑 → ( 𝐾 ∈ LMod ↔ 𝐿 ∈ LMod ) ) |