This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmpropd.a | |- ( ph -> B = ( Base ` J ) ) |
|
| lmhmpropd.b | |- ( ph -> C = ( Base ` K ) ) |
||
| lmhmpropd.c | |- ( ph -> B = ( Base ` L ) ) |
||
| lmhmpropd.d | |- ( ph -> C = ( Base ` M ) ) |
||
| lmhmpropd.1 | |- ( ph -> F = ( Scalar ` J ) ) |
||
| lmhmpropd.2 | |- ( ph -> G = ( Scalar ` K ) ) |
||
| lmhmpropd.3 | |- ( ph -> F = ( Scalar ` L ) ) |
||
| lmhmpropd.4 | |- ( ph -> G = ( Scalar ` M ) ) |
||
| lmhmpropd.p | |- P = ( Base ` F ) |
||
| lmhmpropd.q | |- Q = ( Base ` G ) |
||
| lmhmpropd.e | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` J ) y ) = ( x ( +g ` L ) y ) ) |
||
| lmhmpropd.f | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` M ) y ) ) |
||
| lmhmpropd.g | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` J ) y ) = ( x ( .s ` L ) y ) ) |
||
| lmhmpropd.h | |- ( ( ph /\ ( x e. Q /\ y e. C ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` M ) y ) ) |
||
| Assertion | lmhmpropd | |- ( ph -> ( J LMHom K ) = ( L LMHom M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmpropd.a | |- ( ph -> B = ( Base ` J ) ) |
|
| 2 | lmhmpropd.b | |- ( ph -> C = ( Base ` K ) ) |
|
| 3 | lmhmpropd.c | |- ( ph -> B = ( Base ` L ) ) |
|
| 4 | lmhmpropd.d | |- ( ph -> C = ( Base ` M ) ) |
|
| 5 | lmhmpropd.1 | |- ( ph -> F = ( Scalar ` J ) ) |
|
| 6 | lmhmpropd.2 | |- ( ph -> G = ( Scalar ` K ) ) |
|
| 7 | lmhmpropd.3 | |- ( ph -> F = ( Scalar ` L ) ) |
|
| 8 | lmhmpropd.4 | |- ( ph -> G = ( Scalar ` M ) ) |
|
| 9 | lmhmpropd.p | |- P = ( Base ` F ) |
|
| 10 | lmhmpropd.q | |- Q = ( Base ` G ) |
|
| 11 | lmhmpropd.e | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` J ) y ) = ( x ( +g ` L ) y ) ) |
|
| 12 | lmhmpropd.f | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` M ) y ) ) |
|
| 13 | lmhmpropd.g | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` J ) y ) = ( x ( .s ` L ) y ) ) |
|
| 14 | lmhmpropd.h | |- ( ( ph /\ ( x e. Q /\ y e. C ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` M ) y ) ) |
|
| 15 | 1 3 11 5 7 9 13 | lmodpropd | |- ( ph -> ( J e. LMod <-> L e. LMod ) ) |
| 16 | 2 4 12 6 8 10 14 | lmodpropd | |- ( ph -> ( K e. LMod <-> M e. LMod ) ) |
| 17 | 15 16 | anbi12d | |- ( ph -> ( ( J e. LMod /\ K e. LMod ) <-> ( L e. LMod /\ M e. LMod ) ) ) |
| 18 | 13 | oveqrspc2v | |- ( ( ph /\ ( z e. P /\ w e. B ) ) -> ( z ( .s ` J ) w ) = ( z ( .s ` L ) w ) ) |
| 19 | 18 | adantlr | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( z ( .s ` J ) w ) = ( z ( .s ` L ) w ) ) |
| 20 | 19 | fveq2d | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( f ` ( z ( .s ` J ) w ) ) = ( f ` ( z ( .s ` L ) w ) ) ) |
| 21 | simpll | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ph ) |
|
| 22 | simprl | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> z e. P ) |
|
| 23 | simplrr | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> G = F ) |
|
| 24 | 23 | fveq2d | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( Base ` G ) = ( Base ` F ) ) |
| 25 | 24 10 9 | 3eqtr4g | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> Q = P ) |
| 26 | 22 25 | eleqtrrd | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> z e. Q ) |
| 27 | simplrl | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> f e. ( J GrpHom K ) ) |
|
| 28 | eqid | |- ( Base ` J ) = ( Base ` J ) |
|
| 29 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 30 | 28 29 | ghmf | |- ( f e. ( J GrpHom K ) -> f : ( Base ` J ) --> ( Base ` K ) ) |
| 31 | 27 30 | syl | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> f : ( Base ` J ) --> ( Base ` K ) ) |
| 32 | simprr | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> w e. B ) |
|
| 33 | 21 1 | syl | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> B = ( Base ` J ) ) |
| 34 | 32 33 | eleqtrd | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> w e. ( Base ` J ) ) |
| 35 | 31 34 | ffvelcdmd | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( f ` w ) e. ( Base ` K ) ) |
| 36 | 21 2 | syl | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> C = ( Base ` K ) ) |
| 37 | 35 36 | eleqtrrd | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( f ` w ) e. C ) |
| 38 | 14 | oveqrspc2v | |- ( ( ph /\ ( z e. Q /\ ( f ` w ) e. C ) ) -> ( z ( .s ` K ) ( f ` w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) |
| 39 | 21 26 37 38 | syl12anc | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( z ( .s ` K ) ( f ` w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) |
| 40 | 20 39 | eqeq12d | |- ( ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) /\ ( z e. P /\ w e. B ) ) -> ( ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) <-> ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) |
| 41 | 40 | 2ralbidva | |- ( ( ph /\ ( f e. ( J GrpHom K ) /\ G = F ) ) -> ( A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) <-> A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) |
| 42 | 41 | pm5.32da | |- ( ph -> ( ( ( f e. ( J GrpHom K ) /\ G = F ) /\ A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) <-> ( ( f e. ( J GrpHom K ) /\ G = F ) /\ A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) |
| 43 | df-3an | |- ( ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) <-> ( ( f e. ( J GrpHom K ) /\ G = F ) /\ A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) |
|
| 44 | df-3an | |- ( ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) <-> ( ( f e. ( J GrpHom K ) /\ G = F ) /\ A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) |
|
| 45 | 42 43 44 | 3bitr4g | |- ( ph -> ( ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) <-> ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) |
| 46 | 6 5 | eqeq12d | |- ( ph -> ( G = F <-> ( Scalar ` K ) = ( Scalar ` J ) ) ) |
| 47 | 5 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` J ) ) ) |
| 48 | 9 47 | eqtrid | |- ( ph -> P = ( Base ` ( Scalar ` J ) ) ) |
| 49 | 1 | raleqdv | |- ( ph -> ( A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) <-> A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) |
| 50 | 48 49 | raleqbidv | |- ( ph -> ( A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) <-> A. z e. ( Base ` ( Scalar ` J ) ) A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) |
| 51 | 46 50 | 3anbi23d | |- ( ph -> ( ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) <-> ( f e. ( J GrpHom K ) /\ ( Scalar ` K ) = ( Scalar ` J ) /\ A. z e. ( Base ` ( Scalar ` J ) ) A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) ) |
| 52 | 1 2 3 4 11 12 | ghmpropd | |- ( ph -> ( J GrpHom K ) = ( L GrpHom M ) ) |
| 53 | 52 | eleq2d | |- ( ph -> ( f e. ( J GrpHom K ) <-> f e. ( L GrpHom M ) ) ) |
| 54 | 8 7 | eqeq12d | |- ( ph -> ( G = F <-> ( Scalar ` M ) = ( Scalar ` L ) ) ) |
| 55 | 7 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` L ) ) ) |
| 56 | 9 55 | eqtrid | |- ( ph -> P = ( Base ` ( Scalar ` L ) ) ) |
| 57 | 3 | raleqdv | |- ( ph -> ( A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) <-> A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) |
| 58 | 56 57 | raleqbidv | |- ( ph -> ( A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) <-> A. z e. ( Base ` ( Scalar ` L ) ) A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) |
| 59 | 53 54 58 | 3anbi123d | |- ( ph -> ( ( f e. ( J GrpHom K ) /\ G = F /\ A. z e. P A. w e. B ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) <-> ( f e. ( L GrpHom M ) /\ ( Scalar ` M ) = ( Scalar ` L ) /\ A. z e. ( Base ` ( Scalar ` L ) ) A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) |
| 60 | 45 51 59 | 3bitr3d | |- ( ph -> ( ( f e. ( J GrpHom K ) /\ ( Scalar ` K ) = ( Scalar ` J ) /\ A. z e. ( Base ` ( Scalar ` J ) ) A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) <-> ( f e. ( L GrpHom M ) /\ ( Scalar ` M ) = ( Scalar ` L ) /\ A. z e. ( Base ` ( Scalar ` L ) ) A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) |
| 61 | 17 60 | anbi12d | |- ( ph -> ( ( ( J e. LMod /\ K e. LMod ) /\ ( f e. ( J GrpHom K ) /\ ( Scalar ` K ) = ( Scalar ` J ) /\ A. z e. ( Base ` ( Scalar ` J ) ) A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) <-> ( ( L e. LMod /\ M e. LMod ) /\ ( f e. ( L GrpHom M ) /\ ( Scalar ` M ) = ( Scalar ` L ) /\ A. z e. ( Base ` ( Scalar ` L ) ) A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) ) |
| 62 | eqid | |- ( Scalar ` J ) = ( Scalar ` J ) |
|
| 63 | eqid | |- ( Scalar ` K ) = ( Scalar ` K ) |
|
| 64 | eqid | |- ( Base ` ( Scalar ` J ) ) = ( Base ` ( Scalar ` J ) ) |
|
| 65 | eqid | |- ( .s ` J ) = ( .s ` J ) |
|
| 66 | eqid | |- ( .s ` K ) = ( .s ` K ) |
|
| 67 | 62 63 64 28 65 66 | islmhm | |- ( f e. ( J LMHom K ) <-> ( ( J e. LMod /\ K e. LMod ) /\ ( f e. ( J GrpHom K ) /\ ( Scalar ` K ) = ( Scalar ` J ) /\ A. z e. ( Base ` ( Scalar ` J ) ) A. w e. ( Base ` J ) ( f ` ( z ( .s ` J ) w ) ) = ( z ( .s ` K ) ( f ` w ) ) ) ) ) |
| 68 | eqid | |- ( Scalar ` L ) = ( Scalar ` L ) |
|
| 69 | eqid | |- ( Scalar ` M ) = ( Scalar ` M ) |
|
| 70 | eqid | |- ( Base ` ( Scalar ` L ) ) = ( Base ` ( Scalar ` L ) ) |
|
| 71 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 72 | eqid | |- ( .s ` L ) = ( .s ` L ) |
|
| 73 | eqid | |- ( .s ` M ) = ( .s ` M ) |
|
| 74 | 68 69 70 71 72 73 | islmhm | |- ( f e. ( L LMHom M ) <-> ( ( L e. LMod /\ M e. LMod ) /\ ( f e. ( L GrpHom M ) /\ ( Scalar ` M ) = ( Scalar ` L ) /\ A. z e. ( Base ` ( Scalar ` L ) ) A. w e. ( Base ` L ) ( f ` ( z ( .s ` L ) w ) ) = ( z ( .s ` M ) ( f ` w ) ) ) ) ) |
| 75 | 61 67 74 | 3bitr4g | |- ( ph -> ( f e. ( J LMHom K ) <-> f e. ( L LMHom M ) ) ) |
| 76 | 75 | eqrdv | |- ( ph -> ( J LMHom K ) = ( L LMHom M ) ) |