This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F converges, there is some upper integer set on which F is a total function. (Contributed by Mario Carneiro, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmff.1 | |- Z = ( ZZ>= ` M ) |
|
| lmff.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| lmff.4 | |- ( ph -> M e. ZZ ) |
||
| lmff.5 | |- ( ph -> F e. dom ( ~~>t ` J ) ) |
||
| Assertion | lmff | |- ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | lmff.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | lmff.4 | |- ( ph -> M e. ZZ ) |
|
| 4 | lmff.5 | |- ( ph -> F e. dom ( ~~>t ` J ) ) |
|
| 5 | eldm2g | |- ( F e. dom ( ~~>t ` J ) -> ( F e. dom ( ~~>t ` J ) <-> E. y <. F , y >. e. ( ~~>t ` J ) ) ) |
|
| 6 | 5 | ibi | |- ( F e. dom ( ~~>t ` J ) -> E. y <. F , y >. e. ( ~~>t ` J ) ) |
| 7 | 4 6 | syl | |- ( ph -> E. y <. F , y >. e. ( ~~>t ` J ) ) |
| 8 | df-br | |- ( F ( ~~>t ` J ) y <-> <. F , y >. e. ( ~~>t ` J ) ) |
|
| 9 | 8 | exbii | |- ( E. y F ( ~~>t ` J ) y <-> E. y <. F , y >. e. ( ~~>t ` J ) ) |
| 10 | 7 9 | sylibr | |- ( ph -> E. y F ( ~~>t ` J ) y ) |
| 11 | lmcl | |- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) y ) -> y e. X ) |
|
| 12 | 2 11 | sylan | |- ( ( ph /\ F ( ~~>t ` J ) y ) -> y e. X ) |
| 13 | eleq2 | |- ( j = X -> ( y e. j <-> y e. X ) ) |
|
| 14 | feq3 | |- ( j = X -> ( ( F |` x ) : x --> j <-> ( F |` x ) : x --> X ) ) |
|
| 15 | 14 | rexbidv | |- ( j = X -> ( E. x e. ran ZZ>= ( F |` x ) : x --> j <-> E. x e. ran ZZ>= ( F |` x ) : x --> X ) ) |
| 16 | 13 15 | imbi12d | |- ( j = X -> ( ( y e. j -> E. x e. ran ZZ>= ( F |` x ) : x --> j ) <-> ( y e. X -> E. x e. ran ZZ>= ( F |` x ) : x --> X ) ) ) |
| 17 | 2 | lmbr | |- ( ph -> ( F ( ~~>t ` J ) y <-> ( F e. ( X ^pm CC ) /\ y e. X /\ A. j e. J ( y e. j -> E. x e. ran ZZ>= ( F |` x ) : x --> j ) ) ) ) |
| 18 | 17 | biimpa | |- ( ( ph /\ F ( ~~>t ` J ) y ) -> ( F e. ( X ^pm CC ) /\ y e. X /\ A. j e. J ( y e. j -> E. x e. ran ZZ>= ( F |` x ) : x --> j ) ) ) |
| 19 | 18 | simp3d | |- ( ( ph /\ F ( ~~>t ` J ) y ) -> A. j e. J ( y e. j -> E. x e. ran ZZ>= ( F |` x ) : x --> j ) ) |
| 20 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 21 | 2 20 | syl | |- ( ph -> X e. J ) |
| 22 | 21 | adantr | |- ( ( ph /\ F ( ~~>t ` J ) y ) -> X e. J ) |
| 23 | 16 19 22 | rspcdva | |- ( ( ph /\ F ( ~~>t ` J ) y ) -> ( y e. X -> E. x e. ran ZZ>= ( F |` x ) : x --> X ) ) |
| 24 | 12 23 | mpd | |- ( ( ph /\ F ( ~~>t ` J ) y ) -> E. x e. ran ZZ>= ( F |` x ) : x --> X ) |
| 25 | 10 24 | exlimddv | |- ( ph -> E. x e. ran ZZ>= ( F |` x ) : x --> X ) |
| 26 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 27 | ffn | |- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
|
| 28 | reseq2 | |- ( x = ( ZZ>= ` j ) -> ( F |` x ) = ( F |` ( ZZ>= ` j ) ) ) |
|
| 29 | id | |- ( x = ( ZZ>= ` j ) -> x = ( ZZ>= ` j ) ) |
|
| 30 | 28 29 | feq12d | |- ( x = ( ZZ>= ` j ) -> ( ( F |` x ) : x --> X <-> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) |
| 31 | 30 | rexrn | |- ( ZZ>= Fn ZZ -> ( E. x e. ran ZZ>= ( F |` x ) : x --> X <-> E. j e. ZZ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) |
| 32 | 26 27 31 | mp2b | |- ( E. x e. ran ZZ>= ( F |` x ) : x --> X <-> E. j e. ZZ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |
| 33 | 25 32 | sylib | |- ( ph -> E. j e. ZZ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |
| 34 | 1 | rexuz3 | |- ( M e. ZZ -> ( E. j e. Z A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) <-> E. j e. ZZ A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
| 35 | 3 34 | syl | |- ( ph -> ( E. j e. Z A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) <-> E. j e. ZZ A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
| 36 | 18 | simp1d | |- ( ( ph /\ F ( ~~>t ` J ) y ) -> F e. ( X ^pm CC ) ) |
| 37 | 10 36 | exlimddv | |- ( ph -> F e. ( X ^pm CC ) ) |
| 38 | pmfun | |- ( F e. ( X ^pm CC ) -> Fun F ) |
|
| 39 | 37 38 | syl | |- ( ph -> Fun F ) |
| 40 | ffvresb | |- ( Fun F -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X <-> A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
|
| 41 | 39 40 | syl | |- ( ph -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X <-> A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
| 42 | 41 | rexbidv | |- ( ph -> ( E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X <-> E. j e. Z A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
| 43 | 41 | rexbidv | |- ( ph -> ( E. j e. ZZ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X <-> E. j e. ZZ A. x e. ( ZZ>= ` j ) ( x e. dom F /\ ( F ` x ) e. X ) ) ) |
| 44 | 35 42 43 | 3bitr4d | |- ( ph -> ( E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X <-> E. j e. ZZ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) |
| 45 | 33 44 | mpbird | |- ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |