This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the binary relation "sequence F converges to point P " in a topological space. Definition 1.4-1 of Kreyszig p. 25. The condition F C_ ( CC X. X ) allows to use objects more general than sequences when convenient; see the comment in df-lm . (Contributed by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmbr.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| Assertion | lmbr | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmbr.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | lmfval | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡 ‘ 𝐽 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( ⇝𝑡 ‘ 𝐽 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
| 4 | 3 | breqd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } 𝑃 ) ) |
| 5 | reseq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ↾ 𝑦 ) = ( 𝐹 ↾ 𝑦 ) ) | |
| 6 | 5 | feq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ↔ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ↔ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 10 | eleq1 | ⊢ ( 𝑥 = 𝑃 → ( 𝑥 ∈ 𝑢 ↔ 𝑃 ∈ 𝑢 ) ) | |
| 11 | 10 | imbi1d | ⊢ ( 𝑥 = 𝑃 → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑥 = 𝑃 → ( ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 13 | 9 12 | sylan9bb | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑃 ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 14 | df-3an | ⊢ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) | |
| 15 | 14 | opabbii | ⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } |
| 16 | 13 15 | brab2a | ⊢ ( 𝐹 { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } 𝑃 ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 17 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) | |
| 18 | 16 17 | bitr4i | ⊢ ( 𝐹 { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 19 | 4 18 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) ) |