This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 24-Jul-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmclim.2 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| lmclim.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| Assertion | lmclimf | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ⇝ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmclim.2 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | lmclim.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → 𝐹 : 𝑍 ⟶ ℂ ) | |
| 4 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 5 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 6 | 4 5 | sstri | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℂ |
| 7 | 2 6 | eqsstri | ⊢ 𝑍 ⊆ ℂ |
| 8 | cnex | ⊢ ℂ ∈ V | |
| 9 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝑍 ⟶ ℂ ∧ 𝑍 ⊆ ℂ ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) | |
| 10 | 8 8 9 | mpanl12 | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ ∧ 𝑍 ⊆ ℂ ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
| 11 | 3 7 10 | sylancl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
| 12 | fdm | ⊢ ( 𝐹 : 𝑍 ⟶ ℂ → dom 𝐹 = 𝑍 ) | |
| 13 | eqimss2 | ⊢ ( dom 𝐹 = 𝑍 → 𝑍 ⊆ dom 𝐹 ) | |
| 14 | 3 12 13 | 3syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → 𝑍 ⊆ dom 𝐹 ) |
| 15 | 1 2 | lmclim | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐹 ⇝ 𝑃 ) ) ) |
| 16 | 14 15 | syldan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐹 ⇝ 𝑃 ) ) ) |
| 17 | 11 16 | mpbirand | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ⇝ 𝑃 ) ) |