This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of Kreyszig p. 30. This proof uses countable choice ax-cc . The statement can be generalized to first-countable spaces, not just metrizable spaces. (Contributed by NM, 8-Nov-2007) (Proof shortened by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metelcls.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| metelcls.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| metelcls.5 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | ||
| Assertion | metelcls | ⊢ ( 𝜑 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metelcls.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | metelcls.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | metelcls.5 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | |
| 4 | 1 | met1stc | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ 1stω ) |
| 5 | 2 4 | syl | ⊢ ( 𝜑 → 𝐽 ∈ 1stω ) |
| 6 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 8 | 3 7 | sseqtrd | ⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
| 9 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | 1stcelcls | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| 11 | 5 8 10 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |