This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 24-Jul-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmclim.2 | |- J = ( TopOpen ` CCfld ) |
|
| lmclim.3 | |- Z = ( ZZ>= ` M ) |
||
| Assertion | lmclimf | |- ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` J ) P <-> F ~~> P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmclim.2 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | lmclim.3 | |- Z = ( ZZ>= ` M ) |
|
| 3 | simpr | |- ( ( M e. ZZ /\ F : Z --> CC ) -> F : Z --> CC ) |
|
| 4 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 5 | zsscn | |- ZZ C_ CC |
|
| 6 | 4 5 | sstri | |- ( ZZ>= ` M ) C_ CC |
| 7 | 2 6 | eqsstri | |- Z C_ CC |
| 8 | cnex | |- CC e. _V |
|
| 9 | elpm2r | |- ( ( ( CC e. _V /\ CC e. _V ) /\ ( F : Z --> CC /\ Z C_ CC ) ) -> F e. ( CC ^pm CC ) ) |
|
| 10 | 8 8 9 | mpanl12 | |- ( ( F : Z --> CC /\ Z C_ CC ) -> F e. ( CC ^pm CC ) ) |
| 11 | 3 7 10 | sylancl | |- ( ( M e. ZZ /\ F : Z --> CC ) -> F e. ( CC ^pm CC ) ) |
| 12 | fdm | |- ( F : Z --> CC -> dom F = Z ) |
|
| 13 | eqimss2 | |- ( dom F = Z -> Z C_ dom F ) |
|
| 14 | 3 12 13 | 3syl | |- ( ( M e. ZZ /\ F : Z --> CC ) -> Z C_ dom F ) |
| 15 | 1 2 | lmclim | |- ( ( M e. ZZ /\ Z C_ dom F ) -> ( F ( ~~>t ` J ) P <-> ( F e. ( CC ^pm CC ) /\ F ~~> P ) ) ) |
| 16 | 14 15 | syldan | |- ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` J ) P <-> ( F e. ( CC ^pm CC ) /\ F ~~> P ) ) ) |
| 17 | 11 16 | mpbirand | |- ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` J ) P <-> F ~~> P ) ) |