This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 9-Dec-2006) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmclim.2 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| lmclim.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| Assertion | lmclim | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐹 ⇝ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmclim.2 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | lmclim.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | 3anass | ⊢ ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ) ) | |
| 4 | 2 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 5 | 3anass | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ) | |
| 6 | simplr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) → 𝑍 ⊆ dom 𝐹 ) | |
| 7 | 6 | sselda | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ dom 𝐹 ) |
| 8 | 7 | biantrurd | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ) ) |
| 9 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 10 | 9 | cnmetdval | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ 𝑃 ∈ ℂ ) → ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝑃 ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) ) |
| 12 | 11 | breq1d | ⊢ ( ( 𝑃 ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) |
| 13 | 12 | pm5.32da | ⊢ ( 𝑃 ∈ ℂ → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
| 14 | 13 | ad2antlr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
| 15 | 8 14 | bitr3d | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
| 16 | 5 15 | bitrid | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
| 17 | 4 16 | sylan2 | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
| 18 | 17 | anassrs | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
| 19 | 18 | ralbidva | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
| 20 | 19 | rexbidva | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝑃 ∈ ℂ ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) |
| 22 | 21 | pm5.32da | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ↔ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) ) |
| 23 | 22 | anbi2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) ) ) |
| 24 | 3 23 | bitrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) ) ) |
| 25 | 1 | cnfldtopn | ⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 26 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 27 | 26 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
| 28 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → 𝑀 ∈ ℤ ) | |
| 29 | 25 27 2 28 | lmmbr3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑘 ) ( abs ∘ − ) 𝑃 ) < 𝑥 ) ) ) ) |
| 30 | simpll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → 𝑀 ∈ ℤ ) | |
| 31 | simpr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) | |
| 32 | eqidd | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 33 | 2 30 31 32 | clim2 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝐹 ⇝ 𝑃 ↔ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) ) |
| 34 | 33 | pm5.32da | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐹 ⇝ 𝑃 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑃 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑃 ) ) < 𝑥 ) ) ) ) ) |
| 35 | 24 29 34 | 3bitr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐹 ⇝ 𝑃 ) ) ) |