This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lineset.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| lineset.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| lineset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| lineset.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | ||
| Assertion | lineset | ⊢ ( 𝐾 ∈ 𝐵 → 𝑁 = { 𝑠 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lineset.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | lineset.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | lineset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | lineset.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | |
| 5 | elex | ⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) | |
| 6 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) | |
| 7 | 6 3 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 8 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) | |
| 9 | 8 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
| 10 | 9 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) ↔ 𝑝 ≤ ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) | |
| 12 | 11 2 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
| 13 | 12 | oveqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) = ( 𝑞 ∨ 𝑟 ) ) |
| 14 | 13 | breq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑝 ≤ ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) ↔ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 15 | 10 14 | bitrd | ⊢ ( 𝑘 = 𝐾 → ( 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) ↔ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 16 | 7 15 | rabeqbidv | ⊢ ( 𝑘 = 𝐾 → { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) |
| 17 | 16 | eqeq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ↔ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 18 | 17 | anbi2d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) ↔ ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 19 | 7 18 | rexeqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 20 | 7 19 | rexeqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 21 | 20 | abbidv | ⊢ ( 𝑘 = 𝐾 → { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } = { 𝑠 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ) |
| 22 | df-lines | ⊢ Lines = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } ) | |
| 23 | 3 | fvexi | ⊢ 𝐴 ∈ V |
| 24 | df-sn | ⊢ { { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } } = { 𝑠 ∣ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } } | |
| 25 | snex | ⊢ { { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } } ∈ V | |
| 26 | 24 25 | eqeltrri | ⊢ { 𝑠 ∣ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } } ∈ V |
| 27 | simpr | ⊢ ( ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) → 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) | |
| 28 | 27 | ss2abi | ⊢ { 𝑠 ∣ ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ⊆ { 𝑠 ∣ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } } |
| 29 | 26 28 | ssexi | ⊢ { 𝑠 ∣ ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ∈ V |
| 30 | 23 23 29 | ab2rexex2 | ⊢ { 𝑠 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ∈ V |
| 31 | 21 22 30 | fvmpt | ⊢ ( 𝐾 ∈ V → ( Lines ‘ 𝐾 ) = { 𝑠 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ) |
| 32 | 4 31 | eqtrid | ⊢ ( 𝐾 ∈ V → 𝑁 = { 𝑠 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ) |
| 33 | 5 32 | syl | ⊢ ( 𝐾 ∈ 𝐵 → 𝑁 = { 𝑠 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ) |