This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define set of all projective lines for a Hilbert lattice (actually in any set at all, for simplicity). The join of two distinct atoms equals a line. Definition of lines in item 1 of Holland95 p. 222. (Contributed by NM, 19-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lines | ⊢ Lines = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clines | ⊢ Lines | |
| 1 | vk | ⊢ 𝑘 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | vq | ⊢ 𝑞 | |
| 5 | catm | ⊢ Atoms | |
| 6 | 1 | cv | ⊢ 𝑘 |
| 7 | 6 5 | cfv | ⊢ ( Atoms ‘ 𝑘 ) |
| 8 | vr | ⊢ 𝑟 | |
| 9 | 4 | cv | ⊢ 𝑞 |
| 10 | 8 | cv | ⊢ 𝑟 |
| 11 | 9 10 | wne | ⊢ 𝑞 ≠ 𝑟 |
| 12 | 3 | cv | ⊢ 𝑠 |
| 13 | vp | ⊢ 𝑝 | |
| 14 | 13 | cv | ⊢ 𝑝 |
| 15 | cple | ⊢ le | |
| 16 | 6 15 | cfv | ⊢ ( le ‘ 𝑘 ) |
| 17 | cjn | ⊢ join | |
| 18 | 6 17 | cfv | ⊢ ( join ‘ 𝑘 ) |
| 19 | 9 10 18 | co | ⊢ ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) |
| 20 | 14 19 16 | wbr | ⊢ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) |
| 21 | 20 13 7 | crab | ⊢ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } |
| 22 | 12 21 | wceq | ⊢ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } |
| 23 | 11 22 | wa | ⊢ ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) |
| 24 | 23 8 7 | wrex | ⊢ ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) |
| 25 | 24 4 7 | wrex | ⊢ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) |
| 26 | 25 3 | cab | ⊢ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } |
| 27 | 1 2 26 | cmpt | ⊢ ( 𝑘 ∈ V ↦ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } ) |
| 28 | 0 27 | wceq | ⊢ Lines = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞 ≠ 𝑟 ∧ 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } ) |