This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| isline.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| isline.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| isline.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | ||
| Assertion | isline | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | isline.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | isline.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | isline.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | lineset | ⊢ ( 𝐾 ∈ 𝐷 → 𝑁 = { 𝑥 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ) |
| 6 | 5 | eleq2d | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ 𝑋 ∈ { 𝑥 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ) ) |
| 7 | 3 | fvexi | ⊢ 𝐴 ∈ V |
| 8 | 7 | rabex | ⊢ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ∈ V |
| 9 | eleq1 | ⊢ ( 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } → ( 𝑋 ∈ V ↔ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ∈ V ) ) | |
| 10 | 8 9 | mpbiri | ⊢ ( 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } → 𝑋 ∈ V ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) → 𝑋 ∈ V ) |
| 12 | 11 | a1i | ⊢ ( ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) → ( ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) → 𝑋 ∈ V ) ) |
| 13 | 12 | rexlimivv | ⊢ ( ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) → 𝑋 ∈ V ) |
| 14 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ↔ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) | |
| 15 | 14 | anbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑞 ≠ 𝑟 ∧ 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ↔ ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 16 | 15 | 2rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 17 | 13 16 | elab3 | ⊢ ( 𝑋 ∈ { 𝑥 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 18 | 6 17 | bitrdi | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |