This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lineset.l | |- .<_ = ( le ` K ) |
|
| lineset.j | |- .\/ = ( join ` K ) |
||
| lineset.a | |- A = ( Atoms ` K ) |
||
| lineset.n | |- N = ( Lines ` K ) |
||
| Assertion | lineset | |- ( K e. B -> N = { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lineset.l | |- .<_ = ( le ` K ) |
|
| 2 | lineset.j | |- .\/ = ( join ` K ) |
|
| 3 | lineset.a | |- A = ( Atoms ` K ) |
|
| 4 | lineset.n | |- N = ( Lines ` K ) |
|
| 5 | elex | |- ( K e. B -> K e. _V ) |
|
| 6 | fveq2 | |- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
|
| 7 | 6 3 | eqtr4di | |- ( k = K -> ( Atoms ` k ) = A ) |
| 8 | fveq2 | |- ( k = K -> ( le ` k ) = ( le ` K ) ) |
|
| 9 | 8 1 | eqtr4di | |- ( k = K -> ( le ` k ) = .<_ ) |
| 10 | 9 | breqd | |- ( k = K -> ( p ( le ` k ) ( q ( join ` k ) r ) <-> p .<_ ( q ( join ` k ) r ) ) ) |
| 11 | fveq2 | |- ( k = K -> ( join ` k ) = ( join ` K ) ) |
|
| 12 | 11 2 | eqtr4di | |- ( k = K -> ( join ` k ) = .\/ ) |
| 13 | 12 | oveqd | |- ( k = K -> ( q ( join ` k ) r ) = ( q .\/ r ) ) |
| 14 | 13 | breq2d | |- ( k = K -> ( p .<_ ( q ( join ` k ) r ) <-> p .<_ ( q .\/ r ) ) ) |
| 15 | 10 14 | bitrd | |- ( k = K -> ( p ( le ` k ) ( q ( join ` k ) r ) <-> p .<_ ( q .\/ r ) ) ) |
| 16 | 7 15 | rabeqbidv | |- ( k = K -> { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } = { p e. A | p .<_ ( q .\/ r ) } ) |
| 17 | 16 | eqeq2d | |- ( k = K -> ( s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } <-> s = { p e. A | p .<_ ( q .\/ r ) } ) ) |
| 18 | 17 | anbi2d | |- ( k = K -> ( ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) <-> ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
| 19 | 7 18 | rexeqbidv | |- ( k = K -> ( E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) <-> E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
| 20 | 7 19 | rexeqbidv | |- ( k = K -> ( E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) <-> E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
| 21 | 20 | abbidv | |- ( k = K -> { s | E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) } = { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } ) |
| 22 | df-lines | |- Lines = ( k e. _V |-> { s | E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) } ) |
|
| 23 | 3 | fvexi | |- A e. _V |
| 24 | df-sn | |- { { p e. A | p .<_ ( q .\/ r ) } } = { s | s = { p e. A | p .<_ ( q .\/ r ) } } |
|
| 25 | snex | |- { { p e. A | p .<_ ( q .\/ r ) } } e. _V |
|
| 26 | 24 25 | eqeltrri | |- { s | s = { p e. A | p .<_ ( q .\/ r ) } } e. _V |
| 27 | simpr | |- ( ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) -> s = { p e. A | p .<_ ( q .\/ r ) } ) |
|
| 28 | 27 | ss2abi | |- { s | ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } C_ { s | s = { p e. A | p .<_ ( q .\/ r ) } } |
| 29 | 26 28 | ssexi | |- { s | ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } e. _V |
| 30 | 23 23 29 | ab2rexex2 | |- { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } e. _V |
| 31 | 21 22 30 | fvmpt | |- ( K e. _V -> ( Lines ` K ) = { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } ) |
| 32 | 4 31 | eqtrid | |- ( K e. _V -> N = { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } ) |
| 33 | 5 32 | syl | |- ( K e. B -> N = { s | E. q e. A E. r e. A ( q =/= r /\ s = { p e. A | p .<_ ( q .\/ r ) } ) } ) |