This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| isline2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| isline2.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | ||
| isline2.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | linepmap | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑀 ‘ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 2 | isline2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | isline2.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | |
| 4 | isline2.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝐾 ∈ Lat ) | |
| 6 | simpl2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ 𝐴 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 8 | 7 2 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 9 | 6 8 | syl | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 10 | simpl3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∈ 𝐴 ) | |
| 11 | 7 2 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 13 | 7 1 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 14 | 5 9 12 13 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 15 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 16 | 7 15 2 4 | pmapval | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑃 ∨ 𝑄 ) ) = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } ) |
| 17 | 5 14 16 | syl2anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑀 ‘ ( 𝑃 ∨ 𝑄 ) ) = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } ) |
| 18 | eqid | ⊢ { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } | |
| 19 | 15 1 2 3 | islinei | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } ) ) → { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } ∈ 𝑁 ) |
| 20 | 18 19 | mpanr2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } ∈ 𝑁 ) |
| 21 | 17 20 | eqeltrd | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑀 ‘ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝑁 ) |