This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition implying "is a line". (Contributed by NM, 3-Feb-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| isline.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| isline.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| isline.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | ||
| Assertion | islinei | ⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) → 𝑋 ∈ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | isline.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | isline.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | isline.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | |
| 5 | simpl2 | ⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) → 𝑄 ∈ 𝐴 ) | |
| 6 | simpl3 | ⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) → 𝑅 ∈ 𝐴 ) | |
| 7 | simpr | ⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) → ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) | |
| 8 | neeq1 | ⊢ ( 𝑞 = 𝑄 → ( 𝑞 ≠ 𝑟 ↔ 𝑄 ≠ 𝑟 ) ) | |
| 9 | oveq1 | ⊢ ( 𝑞 = 𝑄 → ( 𝑞 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) | |
| 10 | 9 | breq2d | ⊢ ( 𝑞 = 𝑄 → ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑝 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
| 11 | 10 | rabbidv | ⊢ ( 𝑞 = 𝑄 → { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑟 ) } ) |
| 12 | 11 | eqeq2d | ⊢ ( 𝑞 = 𝑄 → ( 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ↔ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑟 ) } ) ) |
| 13 | 8 12 | anbi12d | ⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ↔ ( 𝑄 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑟 ) } ) ) ) |
| 14 | neeq2 | ⊢ ( 𝑟 = 𝑅 → ( 𝑄 ≠ 𝑟 ↔ 𝑄 ≠ 𝑅 ) ) | |
| 15 | oveq2 | ⊢ ( 𝑟 = 𝑅 → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑅 ) ) | |
| 16 | 15 | breq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑝 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
| 17 | 16 | rabbidv | ⊢ ( 𝑟 = 𝑅 → { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) |
| 18 | 17 | eqeq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑟 ) } ↔ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) |
| 19 | 14 18 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑄 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑟 ) } ) ↔ ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) ) |
| 20 | 13 19 | rspc2ev | ⊢ ( ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) → ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 21 | 5 6 7 20 | syl3anc | ⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) → ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 22 | simpl1 | ⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) → 𝐾 ∈ 𝐷 ) | |
| 23 | 1 2 3 4 | isline | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 25 | 21 24 | mpbird | ⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑄 ∨ 𝑅 ) } ) ) → 𝑋 ∈ 𝑁 ) |