This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isline3.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| isline3.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| isline3.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | ||
| isline3.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | isline3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isline3.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | isline3.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | isline3.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | |
| 5 | isline3.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 6 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 8 | 2 3 4 5 | isline2 | ⊢ ( 𝐾 ∈ Lat → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ) ) |
| 9 | 7 8 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ) ) |
| 10 | simpll | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) | |
| 11 | simplr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) | |
| 12 | 6 | ad2antrr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 13 | 1 3 | atbase | ⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
| 14 | 13 | ad2antrl | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝑝 ∈ 𝐵 ) |
| 15 | 1 3 | atbase | ⊢ ( 𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐵 ) |
| 16 | 15 | ad2antll | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝑞 ∈ 𝐵 ) |
| 17 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑝 ∨ 𝑞 ) ∈ 𝐵 ) |
| 18 | 12 14 16 17 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( 𝑝 ∨ 𝑞 ) ∈ 𝐵 ) |
| 19 | 1 5 | pmap11 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑝 ∨ 𝑞 ) ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ↔ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) |
| 20 | 10 11 18 19 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ↔ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) |
| 21 | 20 | anbi2d | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( ( 𝑝 ≠ 𝑞 ∧ ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ↔ ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) ) |
| 22 | 21 | 2rexbidva | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) ) |
| 23 | 9 22 | bitrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) ) |