This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline2.j | |- .\/ = ( join ` K ) |
|
| isline2.a | |- A = ( Atoms ` K ) |
||
| isline2.n | |- N = ( Lines ` K ) |
||
| isline2.m | |- M = ( pmap ` K ) |
||
| Assertion | linepmap | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( M ` ( P .\/ Q ) ) e. N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline2.j | |- .\/ = ( join ` K ) |
|
| 2 | isline2.a | |- A = ( Atoms ` K ) |
|
| 3 | isline2.n | |- N = ( Lines ` K ) |
|
| 4 | isline2.m | |- M = ( pmap ` K ) |
|
| 5 | simpl1 | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> K e. Lat ) |
|
| 6 | simpl2 | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. A ) |
|
| 7 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 8 | 7 2 | atbase | |- ( P e. A -> P e. ( Base ` K ) ) |
| 9 | 6 8 | syl | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. ( Base ` K ) ) |
| 10 | simpl3 | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. A ) |
|
| 11 | 7 2 | atbase | |- ( Q e. A -> Q e. ( Base ` K ) ) |
| 12 | 10 11 | syl | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. ( Base ` K ) ) |
| 13 | 7 1 | latjcl | |- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 14 | 5 9 12 13 | syl3anc | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 15 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 16 | 7 15 2 4 | pmapval | |- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( M ` ( P .\/ Q ) ) = { r e. A | r ( le ` K ) ( P .\/ Q ) } ) |
| 17 | 5 14 16 | syl2anc | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( M ` ( P .\/ Q ) ) = { r e. A | r ( le ` K ) ( P .\/ Q ) } ) |
| 18 | eqid | |- { r e. A | r ( le ` K ) ( P .\/ Q ) } = { r e. A | r ( le ` K ) ( P .\/ Q ) } |
|
| 19 | 15 1 2 3 | islinei | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ { r e. A | r ( le ` K ) ( P .\/ Q ) } = { r e. A | r ( le ` K ) ( P .\/ Q ) } ) ) -> { r e. A | r ( le ` K ) ( P .\/ Q ) } e. N ) |
| 20 | 18 19 | mpanr2 | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> { r e. A | r ( le ` K ) ( P .\/ Q ) } e. N ) |
| 21 | 17 20 | eqeltrd | |- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( M ` ( P .\/ Q ) ) e. N ) |