This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ellimc . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcval.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| limcval.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| limcvallem.g | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) | ||
| Assertion | limcvallem | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcval.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 2 | limcval.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | limcvallem.g | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) | |
| 4 | iftrue | ⊢ ( 𝑧 = 𝐵 → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = 𝐶 ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑧 = 𝐵 → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 6 | 2 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 7 | simpl2 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐴 ⊆ ℂ ) | |
| 8 | simpl3 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐵 ∈ ℂ ) | |
| 9 | 8 | snssd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → { 𝐵 } ⊆ ℂ ) |
| 10 | 7 9 | unssd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
| 11 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 12 | 6 10 11 | sylancr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 13 | 1 12 | eqeltrid | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 14 | 6 | a1i | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 15 | simpr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) | |
| 16 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐺 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) | |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐺 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
| 18 | 3 | fmpt | ⊢ ( ∀ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ↔ 𝐺 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
| 19 | 17 18 | sylibr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ∀ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 20 | ssun2 | ⊢ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) | |
| 21 | snssg | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 22 | 8 21 | syl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 23 | 20 22 | mpbiri | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
| 24 | 5 19 23 | rspcdva | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 25 | 24 | ex | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) ) |