This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcval.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| limcval.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | limcfval | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcval.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 2 | limcval.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | df-limc | ⊢ limℂ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) | |
| 4 | 3 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → limℂ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) ) |
| 5 | fvexd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) → ( TopOpen ‘ ℂfld ) ∈ V ) | |
| 6 | simplrl | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → 𝑓 = 𝐹 ) | |
| 7 | 6 | dmeqd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → dom 𝑓 = dom 𝐹 ) |
| 8 | simpll1 | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 9 | 8 | fdmd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → dom 𝐹 = 𝐴 ) |
| 10 | 7 9 | eqtrd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → dom 𝑓 = 𝐴 ) |
| 11 | simplrr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → 𝑥 = 𝐵 ) | |
| 12 | 11 | sneqd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → { 𝑥 } = { 𝐵 } ) |
| 13 | 10 12 | uneq12d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( dom 𝑓 ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝐵 } ) ) |
| 14 | 11 | eqeq2d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝐵 ) ) |
| 15 | 6 | fveq1d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 16 | 14 15 | ifbieq2d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 17 | 13 16 | mpteq12dv | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 18 | simpr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → 𝑗 = ( TopOpen ‘ ℂfld ) ) | |
| 19 | 18 2 | eqtr4di | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → 𝑗 = 𝐾 ) |
| 20 | 19 13 | oveq12d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 21 | 20 1 | eqtr4di | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) = 𝐽 ) |
| 22 | 21 19 | oveq12d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) = ( 𝐽 CnP 𝐾 ) ) |
| 23 | 22 11 | fveq12d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) = ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
| 24 | 17 23 | eleq12d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 25 | 5 24 | sbcied | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) → ( [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 26 | 25 | abbidv | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) → { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ) |
| 27 | cnex | ⊢ ℂ ∈ V | |
| 28 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) | |
| 29 | 27 27 28 | mpanl12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
| 30 | 29 | 3adant3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
| 31 | simp3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 32 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) | |
| 33 | 1 2 32 | limcvallem | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝑦 ∈ ℂ ) ) |
| 34 | 33 | abssdv | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ⊆ ℂ ) |
| 35 | 27 | ssex | ⊢ ( { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ⊆ ℂ → { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∈ V ) |
| 36 | 34 35 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∈ V ) |
| 37 | 4 26 30 31 36 | ovmpod | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ) |
| 38 | 37 34 | eqsstrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) |
| 39 | 37 38 | jca | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |