This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcmpt2.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| limcmpt2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| limcmpt2.f | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵 ) ) → 𝐷 ∈ ℂ ) | ||
| limcmpt2.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) | ||
| limcmpt2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | limcmpt2 | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ 𝐷 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcmpt2.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 2 | limcmpt2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | limcmpt2.f | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵 ) ) → 𝐷 ∈ ℂ ) | |
| 4 | limcmpt2.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) | |
| 5 | limcmpt2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 6 | 1 | ssdifssd | ⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
| 7 | 1 2 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 8 | eldifsn | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵 ) ) | |
| 9 | 8 3 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐷 ∈ ℂ ) |
| 10 | eqid | ⊢ ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) | |
| 11 | 6 7 9 10 5 | limcmpt | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ 𝐷 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 12 | undif1 | ⊢ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝐴 ∪ { 𝐵 } ) | |
| 13 | 2 | snssd | ⊢ ( 𝜑 → { 𝐵 } ⊆ 𝐴 ) |
| 14 | ssequn2 | ⊢ ( { 𝐵 } ⊆ 𝐴 ↔ ( 𝐴 ∪ { 𝐵 } ) = 𝐴 ) | |
| 15 | 13 14 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) = 𝐴 ) |
| 16 | 12 15 | eqtrid | ⊢ ( 𝜑 → ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = 𝐴 ) |
| 17 | 16 | mpteq1d | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ) |
| 18 | 16 | oveq2d | ⊢ ( 𝜑 → ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = ( 𝐾 ↾t 𝐴 ) ) |
| 19 | 18 4 | eqtr4di | ⊢ ( 𝜑 → ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = 𝐽 ) |
| 20 | 19 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) CnP 𝐾 ) = ( 𝐽 CnP 𝐾 ) ) |
| 21 | 20 | fveq1d | ⊢ ( 𝜑 → ( ( ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) = ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
| 22 | 17 21 | eleq12d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 23 | 11 22 | bitrd | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ 𝐷 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |