This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcmpt.a | |- ( ph -> A C_ CC ) |
|
| limcmpt.b | |- ( ph -> B e. CC ) |
||
| limcmpt.f | |- ( ( ph /\ z e. A ) -> D e. CC ) |
||
| limcmpt.j | |- J = ( K |`t ( A u. { B } ) ) |
||
| limcmpt.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | limcmpt | |- ( ph -> ( C e. ( ( z e. A |-> D ) limCC B ) <-> ( z e. ( A u. { B } ) |-> if ( z = B , C , D ) ) e. ( ( J CnP K ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcmpt.a | |- ( ph -> A C_ CC ) |
|
| 2 | limcmpt.b | |- ( ph -> B e. CC ) |
|
| 3 | limcmpt.f | |- ( ( ph /\ z e. A ) -> D e. CC ) |
|
| 4 | limcmpt.j | |- J = ( K |`t ( A u. { B } ) ) |
|
| 5 | limcmpt.k | |- K = ( TopOpen ` CCfld ) |
|
| 6 | nfcv | |- F/_ y if ( z = B , C , ( ( z e. A |-> D ) ` z ) ) |
|
| 7 | nfv | |- F/ z y = B |
|
| 8 | nfcv | |- F/_ z C |
|
| 9 | nffvmpt1 | |- F/_ z ( ( z e. A |-> D ) ` y ) |
|
| 10 | 7 8 9 | nfif | |- F/_ z if ( y = B , C , ( ( z e. A |-> D ) ` y ) ) |
| 11 | eqeq1 | |- ( z = y -> ( z = B <-> y = B ) ) |
|
| 12 | fveq2 | |- ( z = y -> ( ( z e. A |-> D ) ` z ) = ( ( z e. A |-> D ) ` y ) ) |
|
| 13 | 11 12 | ifbieq2d | |- ( z = y -> if ( z = B , C , ( ( z e. A |-> D ) ` z ) ) = if ( y = B , C , ( ( z e. A |-> D ) ` y ) ) ) |
| 14 | 6 10 13 | cbvmpt | |- ( z e. ( A u. { B } ) |-> if ( z = B , C , ( ( z e. A |-> D ) ` z ) ) ) = ( y e. ( A u. { B } ) |-> if ( y = B , C , ( ( z e. A |-> D ) ` y ) ) ) |
| 15 | 3 | fmpttd | |- ( ph -> ( z e. A |-> D ) : A --> CC ) |
| 16 | 4 5 14 15 1 2 | ellimc | |- ( ph -> ( C e. ( ( z e. A |-> D ) limCC B ) <-> ( z e. ( A u. { B } ) |-> if ( z = B , C , ( ( z e. A |-> D ) ` z ) ) ) e. ( ( J CnP K ) ` B ) ) ) |
| 17 | elun | |- ( z e. ( A u. { B } ) <-> ( z e. A \/ z e. { B } ) ) |
|
| 18 | velsn | |- ( z e. { B } <-> z = B ) |
|
| 19 | 18 | orbi2i | |- ( ( z e. A \/ z e. { B } ) <-> ( z e. A \/ z = B ) ) |
| 20 | 17 19 | bitri | |- ( z e. ( A u. { B } ) <-> ( z e. A \/ z = B ) ) |
| 21 | pm5.61 | |- ( ( ( z e. A \/ z = B ) /\ -. z = B ) <-> ( z e. A /\ -. z = B ) ) |
|
| 22 | 21 | simplbi | |- ( ( ( z e. A \/ z = B ) /\ -. z = B ) -> z e. A ) |
| 23 | 20 22 | sylanb | |- ( ( z e. ( A u. { B } ) /\ -. z = B ) -> z e. A ) |
| 24 | 23 3 | sylan2 | |- ( ( ph /\ ( z e. ( A u. { B } ) /\ -. z = B ) ) -> D e. CC ) |
| 25 | eqid | |- ( z e. A |-> D ) = ( z e. A |-> D ) |
|
| 26 | 25 | fvmpt2 | |- ( ( z e. A /\ D e. CC ) -> ( ( z e. A |-> D ) ` z ) = D ) |
| 27 | 23 24 26 | syl2an2 | |- ( ( ph /\ ( z e. ( A u. { B } ) /\ -. z = B ) ) -> ( ( z e. A |-> D ) ` z ) = D ) |
| 28 | 27 | anassrs | |- ( ( ( ph /\ z e. ( A u. { B } ) ) /\ -. z = B ) -> ( ( z e. A |-> D ) ` z ) = D ) |
| 29 | 28 | ifeq2da | |- ( ( ph /\ z e. ( A u. { B } ) ) -> if ( z = B , C , ( ( z e. A |-> D ) ` z ) ) = if ( z = B , C , D ) ) |
| 30 | 29 | mpteq2dva | |- ( ph -> ( z e. ( A u. { B } ) |-> if ( z = B , C , ( ( z e. A |-> D ) ` z ) ) ) = ( z e. ( A u. { B } ) |-> if ( z = B , C , D ) ) ) |
| 31 | 30 | eleq1d | |- ( ph -> ( ( z e. ( A u. { B } ) |-> if ( z = B , C , ( ( z e. A |-> D ) ` z ) ) ) e. ( ( J CnP K ) ` B ) <-> ( z e. ( A u. { B } ) |-> if ( z = B , C , D ) ) e. ( ( J CnP K ) ` B ) ) ) |
| 32 | 16 31 | bitrd | |- ( ph -> ( C e. ( ( z e. A |-> D ) limCC B ) <-> ( z e. ( A u. { B } ) |-> if ( z = B , C , D ) ) e. ( ( J CnP K ) ` B ) ) ) |