This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcval.j | |- J = ( K |`t ( A u. { B } ) ) |
|
| limcval.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | limcfval | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( ( F limCC B ) = { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } /\ ( F limCC B ) C_ CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcval.j | |- J = ( K |`t ( A u. { B } ) ) |
|
| 2 | limcval.k | |- K = ( TopOpen ` CCfld ) |
|
| 3 | df-limc | |- limCC = ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) |
|
| 4 | 3 | a1i | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> limCC = ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) ) |
| 5 | fvexd | |- ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) -> ( TopOpen ` CCfld ) e. _V ) |
|
| 6 | simplrl | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> f = F ) |
|
| 7 | 6 | dmeqd | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> dom f = dom F ) |
| 8 | simpll1 | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> F : A --> CC ) |
|
| 9 | 8 | fdmd | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> dom F = A ) |
| 10 | 7 9 | eqtrd | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> dom f = A ) |
| 11 | simplrr | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> x = B ) |
|
| 12 | 11 | sneqd | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> { x } = { B } ) |
| 13 | 10 12 | uneq12d | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( dom f u. { x } ) = ( A u. { B } ) ) |
| 14 | 11 | eqeq2d | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( z = x <-> z = B ) ) |
| 15 | 6 | fveq1d | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( f ` z ) = ( F ` z ) ) |
| 16 | 14 15 | ifbieq2d | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> if ( z = x , y , ( f ` z ) ) = if ( z = B , y , ( F ` z ) ) ) |
| 17 | 13 16 | mpteq12dv | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) = ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) ) |
| 18 | simpr | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> j = ( TopOpen ` CCfld ) ) |
|
| 19 | 18 2 | eqtr4di | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> j = K ) |
| 20 | 19 13 | oveq12d | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( j |`t ( dom f u. { x } ) ) = ( K |`t ( A u. { B } ) ) ) |
| 21 | 20 1 | eqtr4di | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( j |`t ( dom f u. { x } ) ) = J ) |
| 22 | 21 19 | oveq12d | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( ( j |`t ( dom f u. { x } ) ) CnP j ) = ( J CnP K ) ) |
| 23 | 22 11 | fveq12d | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) = ( ( J CnP K ) ` B ) ) |
| 24 | 17 23 | eleq12d | |- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) <-> ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) ) ) |
| 25 | 5 24 | sbcied | |- ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) -> ( [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) <-> ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) ) ) |
| 26 | 25 | abbidv | |- ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) -> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } = { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } ) |
| 27 | cnex | |- CC e. _V |
|
| 28 | elpm2r | |- ( ( ( CC e. _V /\ CC e. _V ) /\ ( F : A --> CC /\ A C_ CC ) ) -> F e. ( CC ^pm CC ) ) |
|
| 29 | 27 27 28 | mpanl12 | |- ( ( F : A --> CC /\ A C_ CC ) -> F e. ( CC ^pm CC ) ) |
| 30 | 29 | 3adant3 | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> F e. ( CC ^pm CC ) ) |
| 31 | simp3 | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> B e. CC ) |
|
| 32 | eqid | |- ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) = ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) |
|
| 33 | 1 2 32 | limcvallem | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) -> y e. CC ) ) |
| 34 | 33 | abssdv | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } C_ CC ) |
| 35 | 27 | ssex | |- ( { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } C_ CC -> { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } e. _V ) |
| 36 | 34 35 | syl | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } e. _V ) |
| 37 | 4 26 30 31 36 | ovmpod | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( F limCC B ) = { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } ) |
| 38 | 37 34 | eqsstrd | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( F limCC B ) C_ CC ) |
| 39 | 37 38 | jca | |- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( ( F limCC B ) = { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } /\ ( F limCC B ) C_ CC ) ) |