This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-limc | ⊢ limℂ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | climc | ⊢ limℂ | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cc | ⊢ ℂ | |
| 3 | cpm | ⊢ ↑pm | |
| 4 | 2 2 3 | co | ⊢ ( ℂ ↑pm ℂ ) |
| 5 | vx | ⊢ 𝑥 | |
| 6 | vy | ⊢ 𝑦 | |
| 7 | ctopn | ⊢ TopOpen | |
| 8 | ccnfld | ⊢ ℂfld | |
| 9 | 8 7 | cfv | ⊢ ( TopOpen ‘ ℂfld ) |
| 10 | vj | ⊢ 𝑗 | |
| 11 | vz | ⊢ 𝑧 | |
| 12 | 1 | cv | ⊢ 𝑓 |
| 13 | 12 | cdm | ⊢ dom 𝑓 |
| 14 | 5 | cv | ⊢ 𝑥 |
| 15 | 14 | csn | ⊢ { 𝑥 } |
| 16 | 13 15 | cun | ⊢ ( dom 𝑓 ∪ { 𝑥 } ) |
| 17 | 11 | cv | ⊢ 𝑧 |
| 18 | 17 14 | wceq | ⊢ 𝑧 = 𝑥 |
| 19 | 6 | cv | ⊢ 𝑦 |
| 20 | 17 12 | cfv | ⊢ ( 𝑓 ‘ 𝑧 ) |
| 21 | 18 19 20 | cif | ⊢ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) |
| 22 | 11 16 21 | cmpt | ⊢ ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) |
| 23 | 10 | cv | ⊢ 𝑗 |
| 24 | crest | ⊢ ↾t | |
| 25 | 23 16 24 | co | ⊢ ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) |
| 26 | ccnp | ⊢ CnP | |
| 27 | 25 23 26 | co | ⊢ ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) |
| 28 | 14 27 | cfv | ⊢ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) |
| 29 | 22 28 | wcel | ⊢ ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) |
| 30 | 29 10 9 | wsbc | ⊢ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) |
| 31 | 30 6 | cab | ⊢ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } |
| 32 | 1 5 4 2 31 | cmpo | ⊢ ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) |
| 33 | 0 32 | wceq | ⊢ limℂ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) |