This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qfto | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 2 | brun | ⊢ ( 𝑥 ( 𝑅 ∪ ◡ 𝑅 ) 𝑦 ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑥 ◡ 𝑅 𝑦 ) ) | |
| 3 | df-br | ⊢ ( 𝑥 ( 𝑅 ∪ ◡ 𝑅 ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ◡ 𝑅 ) ) | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 4 5 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 7 | 6 | orbi2i | ⊢ ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 ◡ 𝑅 𝑦 ) ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 8 | 2 3 7 | 3bitr3i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ◡ 𝑅 ) ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 9 | 1 8 | imbi12i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ◡ 𝑅 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 10 | 9 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ◡ 𝑅 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 11 | relxp | ⊢ Rel ( 𝐴 × 𝐵 ) | |
| 12 | ssrel | ⊢ ( Rel ( 𝐴 × 𝐵 ) → ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ◡ 𝑅 ) ) ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ◡ 𝑅 ) ) ) |
| 14 | r2al | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 15 | 10 13 14 | 3bitr4i | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |