This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istsr.1 | ⊢ 𝑋 = dom 𝑅 | |
| Assertion | istsr | ⊢ ( 𝑅 ∈ TosetRel ↔ ( 𝑅 ∈ PosetRel ∧ ( 𝑋 × 𝑋 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istsr.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | dmeq | ⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) | |
| 3 | 2 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → dom 𝑟 = 𝑋 ) |
| 4 | 3 | sqxpeqd | ⊢ ( 𝑟 = 𝑅 → ( dom 𝑟 × dom 𝑟 ) = ( 𝑋 × 𝑋 ) ) |
| 5 | id | ⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) | |
| 6 | cnveq | ⊢ ( 𝑟 = 𝑅 → ◡ 𝑟 = ◡ 𝑅 ) | |
| 7 | 5 6 | uneq12d | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∪ ◡ 𝑟 ) = ( 𝑅 ∪ ◡ 𝑅 ) ) |
| 8 | 4 7 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝑟 ∪ ◡ 𝑟 ) ↔ ( 𝑋 × 𝑋 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ) ) |
| 9 | df-tsr | ⊢ TosetRel = { 𝑟 ∈ PosetRel ∣ ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝑟 ∪ ◡ 𝑟 ) } | |
| 10 | 8 9 | elrab2 | ⊢ ( 𝑅 ∈ TosetRel ↔ ( 𝑅 ∈ PosetRel ∧ ( 𝑋 × 𝑋 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ) ) |