This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leexp2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancomb | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) | |
| 2 | ltexp2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑁 < 𝑀 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) | |
| 3 | 1 2 | sylanb | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑁 < 𝑀 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) |
| 4 | 3 | notbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( ¬ 𝑁 < 𝑀 ↔ ¬ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) |
| 5 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → 𝑀 ∈ ℤ ) | |
| 6 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → 𝑁 ∈ ℤ ) | |
| 7 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 8 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 9 | lenlt | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀 ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀 ) ) |
| 11 | 5 6 10 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀 ) ) |
| 12 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 13 | 0red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) | |
| 14 | 1red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) | |
| 15 | 0lt1 | ⊢ 0 < 1 | |
| 16 | 15 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → 0 < 1 ) |
| 17 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → 1 < 𝐴 ) | |
| 18 | 13 14 12 16 17 | lttrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
| 19 | 18 | gt0ne0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 20 | reexpclz | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑀 ∈ ℤ ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ ) | |
| 21 | 12 19 5 20 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ ) |
| 22 | reexpclz | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) | |
| 23 | 12 19 6 22 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
| 24 | 21 23 | lenltd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ↔ ¬ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) |
| 25 | 4 11 24 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) ) |