This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leexp2 | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( M <_ N <-> ( A ^ M ) <_ ( A ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancomb | |- ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) <-> ( A e. RR /\ N e. ZZ /\ M e. ZZ ) ) |
|
| 2 | ltexp2 | |- ( ( ( A e. RR /\ N e. ZZ /\ M e. ZZ ) /\ 1 < A ) -> ( N < M <-> ( A ^ N ) < ( A ^ M ) ) ) |
|
| 3 | 1 2 | sylanb | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( N < M <-> ( A ^ N ) < ( A ^ M ) ) ) |
| 4 | 3 | notbid | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( -. N < M <-> -. ( A ^ N ) < ( A ^ M ) ) ) |
| 5 | simpl2 | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> M e. ZZ ) |
|
| 6 | simpl3 | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> N e. ZZ ) |
|
| 7 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 8 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 9 | lenlt | |- ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> -. N < M ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> -. N < M ) ) |
| 11 | 5 6 10 | syl2anc | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( M <_ N <-> -. N < M ) ) |
| 12 | simpl1 | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> A e. RR ) |
|
| 13 | 0red | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> 0 e. RR ) |
|
| 14 | 1red | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> 1 e. RR ) |
|
| 15 | 0lt1 | |- 0 < 1 |
|
| 16 | 15 | a1i | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> 0 < 1 ) |
| 17 | simpr | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> 1 < A ) |
|
| 18 | 13 14 12 16 17 | lttrd | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> 0 < A ) |
| 19 | 18 | gt0ne0d | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> A =/= 0 ) |
| 20 | reexpclz | |- ( ( A e. RR /\ A =/= 0 /\ M e. ZZ ) -> ( A ^ M ) e. RR ) |
|
| 21 | 12 19 5 20 | syl3anc | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( A ^ M ) e. RR ) |
| 22 | reexpclz | |- ( ( A e. RR /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. RR ) |
|
| 23 | 12 19 6 22 | syl3anc | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( A ^ N ) e. RR ) |
| 24 | 21 23 | lenltd | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( ( A ^ M ) <_ ( A ^ N ) <-> -. ( A ^ N ) < ( A ^ M ) ) ) |
| 25 | 4 11 24 | 3bitr4d | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( M <_ N <-> ( A ^ M ) <_ ( A ^ N ) ) ) |