This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ortholattice meet is associative. (This can also be proved for lattices with a longer proof.) ( inass analog.) (Contributed by NM, 7-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olmass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| olmass.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latmassOLD | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olmass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | olmass.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | simpl | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ OL ) | |
| 4 | ollat | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
| 6 | olop | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ OP ) |
| 8 | simpr1 | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 9 | eqid | ⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) | |
| 10 | 1 9 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 11 | 7 8 10 | syl2anc | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 | simpr2 | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 13 | 1 9 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 14 | 7 12 13 | syl2anc | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 15 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 16 | 1 15 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 17 | 5 11 14 16 | syl3anc | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 18 | simpr3 | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 19 | 1 15 2 9 | oldmj3 | ⊢ ( ( 𝐾 ∈ OL ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) = ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∧ 𝑍 ) ) |
| 20 | 3 17 18 19 | syl3anc | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) = ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∧ 𝑍 ) ) |
| 21 | 1 9 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑍 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 22 | 7 18 21 | syl2anc | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 23 | 1 15 | latjass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) |
| 24 | 5 11 14 22 23 | syl13anc | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) ) |
| 26 | 1 15 2 9 | oldmj4 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ∧ 𝑌 ) ) |
| 27 | 26 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ∧ 𝑌 ) ) |
| 28 | 27 | oveq1d | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∧ 𝑍 ) = ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) ) |
| 29 | 20 25 28 | 3eqtr3rd | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) = ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) ) |
| 30 | 1 15 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ∈ 𝐵 ) |
| 31 | 5 14 22 30 | syl3anc | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ∈ 𝐵 ) |
| 32 | 1 15 2 9 | oldmj2 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) = ( 𝑋 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) ) |
| 33 | 3 8 31 32 | syl3anc | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) = ( 𝑋 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) ) |
| 34 | 1 15 2 9 | oldmj4 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) = ( 𝑌 ∧ 𝑍 ) ) |
| 35 | 34 | 3adant3r1 | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) = ( 𝑌 ∧ 𝑍 ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑍 ) ) ) ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) ) |
| 37 | 29 33 36 | 3eqtrd | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) ) |