This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ortholattice meet is associative. (This can also be proved for lattices with a longer proof.) ( inass analog.) (Contributed by NM, 7-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olmass.b | |- B = ( Base ` K ) |
|
| olmass.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latmassOLD | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) ./\ Z ) = ( X ./\ ( Y ./\ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olmass.b | |- B = ( Base ` K ) |
|
| 2 | olmass.m | |- ./\ = ( meet ` K ) |
|
| 3 | simpl | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. OL ) |
|
| 4 | ollat | |- ( K e. OL -> K e. Lat ) |
|
| 5 | 4 | adantr | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
| 6 | olop | |- ( K e. OL -> K e. OP ) |
|
| 7 | 6 | adantr | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. OP ) |
| 8 | simpr1 | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 9 | eqid | |- ( oc ` K ) = ( oc ` K ) |
|
| 10 | 1 9 | opoccl | |- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 11 | 7 8 10 | syl2anc | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` X ) e. B ) |
| 12 | simpr2 | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 13 | 1 9 | opoccl | |- ( ( K e. OP /\ Y e. B ) -> ( ( oc ` K ) ` Y ) e. B ) |
| 14 | 7 12 13 | syl2anc | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` Y ) e. B ) |
| 15 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 16 | 1 15 | latjcl | |- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) e. B ) |
| 17 | 5 11 14 16 | syl3anc | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) e. B ) |
| 18 | simpr3 | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 19 | 1 15 2 9 | oldmj3 | |- ( ( K e. OL /\ ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) e. B /\ Z e. B ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) = ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) ./\ Z ) ) |
| 20 | 3 17 18 19 | syl3anc | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) = ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) ./\ Z ) ) |
| 21 | 1 9 | opoccl | |- ( ( K e. OP /\ Z e. B ) -> ( ( oc ` K ) ` Z ) e. B ) |
| 22 | 7 18 21 | syl2anc | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` Z ) e. B ) |
| 23 | 1 15 | latjass | |- ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( join ` K ) ( ( oc ` K ) ` Z ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) ) |
| 24 | 5 11 14 22 23 | syl13anc | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( join ` K ) ( ( oc ` K ) ` Z ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) ) |
| 25 | 24 | fveq2d | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) = ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) ) ) |
| 26 | 1 15 2 9 | oldmj4 | |- ( ( K e. OL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) = ( X ./\ Y ) ) |
| 27 | 26 | 3adant3r3 | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) = ( X ./\ Y ) ) |
| 28 | 27 | oveq1d | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) ./\ Z ) = ( ( X ./\ Y ) ./\ Z ) ) |
| 29 | 20 25 28 | 3eqtr3rd | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) ./\ Z ) = ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) ) ) |
| 30 | 1 15 | latjcl | |- ( ( K e. Lat /\ ( ( oc ` K ) ` Y ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) -> ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) e. B ) |
| 31 | 5 14 22 30 | syl3anc | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) e. B ) |
| 32 | 1 15 2 9 | oldmj2 | |- ( ( K e. OL /\ X e. B /\ ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) ) = ( X ./\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) ) ) |
| 33 | 3 8 31 32 | syl3anc | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) ) = ( X ./\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) ) ) |
| 34 | 1 15 2 9 | oldmj4 | |- ( ( K e. OL /\ Y e. B /\ Z e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) = ( Y ./\ Z ) ) |
| 35 | 34 | 3adant3r1 | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) = ( Y ./\ Z ) ) |
| 36 | 35 | oveq2d | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` Y ) ( join ` K ) ( ( oc ` K ) ` Z ) ) ) ) = ( X ./\ ( Y ./\ Z ) ) ) |
| 37 | 29 33 36 | 3eqtrd | |- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) ./\ Z ) = ( X ./\ ( Y ./\ Z ) ) ) |