This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rearrangement of lattice meet. ( in12 analog.) (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olmass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| olmass.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latm12 | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) = ( 𝑌 ∧ ( 𝑋 ∧ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olmass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | olmass.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | ollat | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
| 5 | simpr1 | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 6 | simpr2 | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 7 | 1 2 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) = ( ( 𝑌 ∧ 𝑋 ) ∧ 𝑍 ) ) |
| 10 | 1 2 | latmassOLD | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) ) |
| 11 | simpr3 | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 12 | 6 5 11 | 3jca | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) |
| 13 | 1 2 | latmassOLD | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 ∧ 𝑋 ) ∧ 𝑍 ) = ( 𝑌 ∧ ( 𝑋 ∧ 𝑍 ) ) ) |
| 14 | 12 13 | syldan | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 ∧ 𝑋 ) ∧ 𝑍 ) = ( 𝑌 ∧ ( 𝑋 ∧ 𝑍 ) ) ) |
| 15 | 9 10 14 | 3eqtr3d | ⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ ( 𝑌 ∧ 𝑍 ) ) = ( 𝑌 ∧ ( 𝑋 ∧ 𝑍 ) ) ) |