This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Morgan's law for join in an ortholattice. ( chdmj2 analog.) (Contributed by NM, 7-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oldmm1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| oldmm1.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| oldmm1.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| oldmm1.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | oldmj2 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oldmm1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | oldmm1.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | oldmm1.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | oldmm1.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 5 | olop | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) | |
| 6 | 1 4 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 9 | 1 2 3 4 | oldmj1 | ⊢ ( ( 𝐾 ∈ OL ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∧ ( ⊥ ‘ 𝑌 ) ) ) |
| 10 | 8 9 | syld3an2 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∧ ( ⊥ ‘ 𝑌 ) ) ) |
| 11 | 1 4 | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 12 | 5 11 | sylan | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 14 | 13 | oveq1d | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∧ ( ⊥ ‘ 𝑌 ) ) = ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) |
| 15 | 10 14 | eqtrd | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) |