This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Morgan's law for join in an ortholattice. ( chdmj3 analog.) (Contributed by NM, 7-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oldmm1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| oldmm1.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| oldmm1.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| oldmm1.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | oldmj3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oldmm1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | oldmm1.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | oldmm1.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | oldmm1.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 5 | olop | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 7 | simp3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 8 | 1 4 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 10 | 1 2 3 4 | oldmj1 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 11 | 9 10 | syld3an3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 12 | 1 4 | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 13 | 6 7 12 | syl2anc | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) |
| 15 | 11 14 | eqtrd | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) |