This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kmlem9.1 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } | |
| Assertion | kmlem9 | ⊢ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem9.1 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | eqeq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) | |
| 4 | 3 | rexbidv | ⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
| 5 | 2 4 1 | elab2 | ⊢ ( 𝑧 ∈ 𝐴 ↔ ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
| 6 | vex | ⊢ 𝑤 ∈ V | |
| 7 | eqeq1 | ⊢ ( 𝑢 = 𝑤 → ( 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ 𝑤 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) | |
| 8 | 7 | rexbidv | ⊢ ( 𝑢 = 𝑤 → ( ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ ∃ 𝑡 ∈ 𝑥 𝑤 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
| 9 | 6 8 1 | elab2 | ⊢ ( 𝑤 ∈ 𝐴 ↔ ∃ 𝑡 ∈ 𝑥 𝑤 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
| 10 | difeq1 | ⊢ ( 𝑡 = ℎ → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( ℎ ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) | |
| 11 | sneq | ⊢ ( 𝑡 = ℎ → { 𝑡 } = { ℎ } ) | |
| 12 | 11 | difeq2d | ⊢ ( 𝑡 = ℎ → ( 𝑥 ∖ { 𝑡 } ) = ( 𝑥 ∖ { ℎ } ) ) |
| 13 | 12 | unieqd | ⊢ ( 𝑡 = ℎ → ∪ ( 𝑥 ∖ { 𝑡 } ) = ∪ ( 𝑥 ∖ { ℎ } ) ) |
| 14 | 13 | difeq2d | ⊢ ( 𝑡 = ℎ → ( ℎ ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) |
| 15 | 10 14 | eqtrd | ⊢ ( 𝑡 = ℎ → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) |
| 16 | 15 | eqeq2d | ⊢ ( 𝑡 = ℎ → ( 𝑤 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) ) |
| 17 | 16 | cbvrexvw | ⊢ ( ∃ 𝑡 ∈ 𝑥 𝑤 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ ∃ ℎ ∈ 𝑥 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) |
| 18 | 9 17 | bitri | ⊢ ( 𝑤 ∈ 𝐴 ↔ ∃ ℎ ∈ 𝑥 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) |
| 19 | reeanv | ⊢ ( ∃ 𝑡 ∈ 𝑥 ∃ ℎ ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) ↔ ( ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ ∃ ℎ ∈ 𝑥 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) ) | |
| 20 | eqeq12 | ⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 = 𝑤 ↔ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) ) | |
| 21 | 15 20 | imbitrrid | ⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑡 = ℎ → 𝑧 = 𝑤 ) ) |
| 22 | 21 | necon3d | ⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ≠ 𝑤 → 𝑡 ≠ ℎ ) ) |
| 23 | kmlem5 | ⊢ ( ( ℎ ∈ 𝑥 ∧ 𝑡 ≠ ℎ ) → ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) = ∅ ) | |
| 24 | ineq12 | ⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ∩ 𝑤 ) = ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) ) | |
| 25 | 24 | eqeq1d | ⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) = ∅ ) ) |
| 26 | 23 25 | imbitrrid | ⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( ( ℎ ∈ 𝑥 ∧ 𝑡 ≠ ℎ ) → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 27 | 26 | expd | ⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( ℎ ∈ 𝑥 → ( 𝑡 ≠ ℎ → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 28 | 22 27 | syl5d | ⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( ℎ ∈ 𝑥 → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 29 | 28 | com12 | ⊢ ( ℎ ∈ 𝑥 → ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝑡 ∈ 𝑥 ∧ ℎ ∈ 𝑥 ) → ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 31 | 30 | rexlimivv | ⊢ ( ∃ 𝑡 ∈ 𝑥 ∃ ℎ ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 32 | 19 31 | sylbir | ⊢ ( ( ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ ∃ ℎ ∈ 𝑥 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 33 | 5 18 32 | syl2anb | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 34 | 33 | rgen2 | ⊢ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) |