This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kmlem9.1 | |- A = { u | E. t e. x u = ( t \ U. ( x \ { t } ) ) } |
|
| Assertion | kmlem9 | |- A. z e. A A. w e. A ( z =/= w -> ( z i^i w ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem9.1 | |- A = { u | E. t e. x u = ( t \ U. ( x \ { t } ) ) } |
|
| 2 | vex | |- z e. _V |
|
| 3 | eqeq1 | |- ( u = z -> ( u = ( t \ U. ( x \ { t } ) ) <-> z = ( t \ U. ( x \ { t } ) ) ) ) |
|
| 4 | 3 | rexbidv | |- ( u = z -> ( E. t e. x u = ( t \ U. ( x \ { t } ) ) <-> E. t e. x z = ( t \ U. ( x \ { t } ) ) ) ) |
| 5 | 2 4 1 | elab2 | |- ( z e. A <-> E. t e. x z = ( t \ U. ( x \ { t } ) ) ) |
| 6 | vex | |- w e. _V |
|
| 7 | eqeq1 | |- ( u = w -> ( u = ( t \ U. ( x \ { t } ) ) <-> w = ( t \ U. ( x \ { t } ) ) ) ) |
|
| 8 | 7 | rexbidv | |- ( u = w -> ( E. t e. x u = ( t \ U. ( x \ { t } ) ) <-> E. t e. x w = ( t \ U. ( x \ { t } ) ) ) ) |
| 9 | 6 8 1 | elab2 | |- ( w e. A <-> E. t e. x w = ( t \ U. ( x \ { t } ) ) ) |
| 10 | difeq1 | |- ( t = h -> ( t \ U. ( x \ { t } ) ) = ( h \ U. ( x \ { t } ) ) ) |
|
| 11 | sneq | |- ( t = h -> { t } = { h } ) |
|
| 12 | 11 | difeq2d | |- ( t = h -> ( x \ { t } ) = ( x \ { h } ) ) |
| 13 | 12 | unieqd | |- ( t = h -> U. ( x \ { t } ) = U. ( x \ { h } ) ) |
| 14 | 13 | difeq2d | |- ( t = h -> ( h \ U. ( x \ { t } ) ) = ( h \ U. ( x \ { h } ) ) ) |
| 15 | 10 14 | eqtrd | |- ( t = h -> ( t \ U. ( x \ { t } ) ) = ( h \ U. ( x \ { h } ) ) ) |
| 16 | 15 | eqeq2d | |- ( t = h -> ( w = ( t \ U. ( x \ { t } ) ) <-> w = ( h \ U. ( x \ { h } ) ) ) ) |
| 17 | 16 | cbvrexvw | |- ( E. t e. x w = ( t \ U. ( x \ { t } ) ) <-> E. h e. x w = ( h \ U. ( x \ { h } ) ) ) |
| 18 | 9 17 | bitri | |- ( w e. A <-> E. h e. x w = ( h \ U. ( x \ { h } ) ) ) |
| 19 | reeanv | |- ( E. t e. x E. h e. x ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) <-> ( E. t e. x z = ( t \ U. ( x \ { t } ) ) /\ E. h e. x w = ( h \ U. ( x \ { h } ) ) ) ) |
|
| 20 | eqeq12 | |- ( ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( z = w <-> ( t \ U. ( x \ { t } ) ) = ( h \ U. ( x \ { h } ) ) ) ) |
|
| 21 | 15 20 | imbitrrid | |- ( ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( t = h -> z = w ) ) |
| 22 | 21 | necon3d | |- ( ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( z =/= w -> t =/= h ) ) |
| 23 | kmlem5 | |- ( ( h e. x /\ t =/= h ) -> ( ( t \ U. ( x \ { t } ) ) i^i ( h \ U. ( x \ { h } ) ) ) = (/) ) |
|
| 24 | ineq12 | |- ( ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( z i^i w ) = ( ( t \ U. ( x \ { t } ) ) i^i ( h \ U. ( x \ { h } ) ) ) ) |
|
| 25 | 24 | eqeq1d | |- ( ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( ( z i^i w ) = (/) <-> ( ( t \ U. ( x \ { t } ) ) i^i ( h \ U. ( x \ { h } ) ) ) = (/) ) ) |
| 26 | 23 25 | imbitrrid | |- ( ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( ( h e. x /\ t =/= h ) -> ( z i^i w ) = (/) ) ) |
| 27 | 26 | expd | |- ( ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( h e. x -> ( t =/= h -> ( z i^i w ) = (/) ) ) ) |
| 28 | 22 27 | syl5d | |- ( ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( h e. x -> ( z =/= w -> ( z i^i w ) = (/) ) ) ) |
| 29 | 28 | com12 | |- ( h e. x -> ( ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( z =/= w -> ( z i^i w ) = (/) ) ) ) |
| 30 | 29 | adantl | |- ( ( t e. x /\ h e. x ) -> ( ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( z =/= w -> ( z i^i w ) = (/) ) ) ) |
| 31 | 30 | rexlimivv | |- ( E. t e. x E. h e. x ( z = ( t \ U. ( x \ { t } ) ) /\ w = ( h \ U. ( x \ { h } ) ) ) -> ( z =/= w -> ( z i^i w ) = (/) ) ) |
| 32 | 19 31 | sylbir | |- ( ( E. t e. x z = ( t \ U. ( x \ { t } ) ) /\ E. h e. x w = ( h \ U. ( x \ { h } ) ) ) -> ( z =/= w -> ( z i^i w ) = (/) ) ) |
| 33 | 5 18 32 | syl2anb | |- ( ( z e. A /\ w e. A ) -> ( z =/= w -> ( z i^i w ) = (/) ) ) |
| 34 | 33 | rgen2 | |- A. z e. A A. w e. A ( z =/= w -> ( z i^i w ) = (/) ) |