This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kmlem14.1 | ⊢ ( 𝜑 ↔ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) | |
| kmlem14.2 | ⊢ ( 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) | ||
| kmlem14.3 | ⊢ ( 𝜒 ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) | ||
| Assertion | kmlem15 | ⊢ ( ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜒 ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem14.1 | ⊢ ( 𝜑 ↔ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) | |
| 2 | kmlem14.2 | ⊢ ( 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) | |
| 3 | kmlem14.3 | ⊢ ( 𝜒 ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑢 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) | |
| 5 | 4 | eu1 | ⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ) ) |
| 6 | elin | ⊢ ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ) | |
| 7 | clelsb1 | ⊢ ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑢 ∈ ( 𝑧 ∩ 𝑦 ) ) | |
| 8 | elin | ⊢ ( 𝑢 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) ) | |
| 9 | 7 8 | bitri | ⊢ ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) ) |
| 10 | equcom | ⊢ ( 𝑣 = 𝑢 ↔ 𝑢 = 𝑣 ) | |
| 11 | 9 10 | imbi12i | ⊢ ( ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ↔ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) |
| 12 | 11 | albii | ⊢ ( ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ↔ ∀ 𝑢 ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) |
| 13 | 6 12 | anbi12i | ⊢ ( ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ) ↔ ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ∀ 𝑢 ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 14 | 19.28v | ⊢ ( ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ↔ ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ∀ 𝑢 ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) | |
| 15 | 13 14 | bitr4i | ⊢ ( ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ) ↔ ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 16 | 15 | exbii | ⊢ ( ∃ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ) ↔ ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 17 | 5 16 | bitri | ⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 18 | 17 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 19 | df-ral | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) | |
| 20 | 2 | albii | ⊢ ( ∀ 𝑢 𝜓 ↔ ∀ 𝑢 ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 21 | 19.21v | ⊢ ( ∀ 𝑢 ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ↔ ( 𝑧 ∈ 𝑥 → ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) | |
| 22 | 20 21 | bitri | ⊢ ( ∀ 𝑢 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 23 | 22 | exbii | ⊢ ( ∃ 𝑣 ∀ 𝑢 𝜓 ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑥 → ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 24 | 19.37v | ⊢ ( ∃ 𝑣 ( 𝑧 ∈ 𝑥 → ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ↔ ( 𝑧 ∈ 𝑥 → ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) | |
| 25 | 23 24 | bitri | ⊢ ( ∃ 𝑣 ∀ 𝑢 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 26 | 25 | albii | ⊢ ( ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 𝜓 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 27 | 19 26 | bitr4i | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 𝜓 ) |
| 28 | 3 18 27 | 3bitri | ⊢ ( 𝜒 ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 𝜓 ) |
| 29 | 28 | anbi2i | ⊢ ( ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜒 ) ↔ ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 𝜓 ) ) |
| 30 | 19.28v | ⊢ ( ∀ 𝑧 ( ¬ 𝑦 ∈ 𝑥 ∧ ∃ 𝑣 ∀ 𝑢 𝜓 ) ↔ ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 𝜓 ) ) | |
| 31 | 19.28v | ⊢ ( ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ↔ ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑢 𝜓 ) ) | |
| 32 | 31 | exbii | ⊢ ( ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ↔ ∃ 𝑣 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑢 𝜓 ) ) |
| 33 | 19.42v | ⊢ ( ∃ 𝑣 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑢 𝜓 ) ↔ ( ¬ 𝑦 ∈ 𝑥 ∧ ∃ 𝑣 ∀ 𝑢 𝜓 ) ) | |
| 34 | 32 33 | bitr2i | ⊢ ( ( ¬ 𝑦 ∈ 𝑥 ∧ ∃ 𝑣 ∀ 𝑢 𝜓 ) ↔ ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |
| 35 | 34 | albii | ⊢ ( ∀ 𝑧 ( ¬ 𝑦 ∈ 𝑥 ∧ ∃ 𝑣 ∀ 𝑢 𝜓 ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |
| 36 | 29 30 35 | 3bitr2i | ⊢ ( ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜒 ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |