This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The antecedent provides a condition implying the converse of 19.33 . (Contributed by NM, 27-Mar-2004) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 5-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.33b | ⊢ ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor | ⊢ ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜓 ) ) | |
| 2 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
| 3 | pm2.53 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜑 → 𝜓 ) ) | |
| 4 | 3 | al2imi | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 𝜓 ) ) |
| 5 | 2 4 | biimtrrid | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ¬ ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) |
| 6 | olc | ⊢ ( ∀ 𝑥 𝜓 → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) | |
| 7 | 5 6 | syl6com | ⊢ ( ¬ ∃ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |
| 8 | 19.30 | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) | |
| 9 | 8 | orcomd | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∃ 𝑥 𝜓 ∨ ∀ 𝑥 𝜑 ) ) |
| 10 | 9 | ord | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ¬ ∃ 𝑥 𝜓 → ∀ 𝑥 𝜑 ) ) |
| 11 | orc | ⊢ ( ∀ 𝑥 𝜑 → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) | |
| 12 | 10 11 | syl6com | ⊢ ( ¬ ∃ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |
| 13 | 7 12 | jaoi | ⊢ ( ( ¬ ∃ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |
| 14 | 1 13 | sylbi | ⊢ ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |
| 15 | 19.33 | ⊢ ( ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ) | |
| 16 | 14 15 | impbid1 | ⊢ ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |