This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the compact generator. (The "k" in kGen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgenval | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑘Gen ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-kgen | ⊢ 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } ) | |
| 2 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 3 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 4 | 3 | eqcomd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∪ 𝐽 = 𝑋 ) |
| 5 | 2 4 | sylan9eqr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ∪ 𝑗 = 𝑋 ) |
| 6 | 5 | pweqd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝒫 ∪ 𝑗 = 𝒫 𝑋 ) |
| 7 | oveq1 | ⊢ ( 𝑗 = 𝐽 → ( 𝑗 ↾t 𝑘 ) = ( 𝐽 ↾t 𝑘 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 ↾t 𝑘 ) ∈ Comp ↔ ( 𝐽 ↾t 𝑘 ) ∈ Comp ) ) |
| 9 | 7 | eleq2d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ↔ ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑗 = 𝐽 → ( ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ↔ ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ↔ ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
| 12 | 6 11 | raleqbidv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ↔ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
| 13 | 6 12 | rabeqbidv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } = { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ) |
| 14 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 15 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 16 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 17 | rabexg | ⊢ ( 𝒫 𝑋 ∈ V → { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ∈ V ) | |
| 18 | 15 16 17 | 3syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ∈ V ) |
| 19 | 1 13 14 18 | fvmptd2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑘Gen ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ) |